首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
针对因Slope One算法没有考虑相似性,而导致个性化推荐准确率不高的问题,提出了一种基于用户相似性的加权Slope One算法(BUS Weighted Slope One算法),通过先评定用户活跃度,筛选出活跃用户,然后依据项目间相似性对部分未评分项目进行预测填充,再利用用户间的相似性得到用户的最近邻居集合,将用户间的相似性作为预测评分权重,最后根据最近邻居集合对样本进行预测分析。通过三组实验研究结果表明,与其他传统方法相比,本文提出的方法同时提高了评分预测的准确性和计算效率。  相似文献   

2.
互联网时代,信息呈爆炸式增长,推荐系统作为解决"信息过载"的有效方法之一,广泛应用于电子商务类网站。本文基于Python设计并实现了一款基于Slope One算法的电影推荐系统,给出了算法的实现过程以及具体代码。  相似文献   

3.
Slope One算法是一种易实现,运算效率高,可扩展性好的协同过滤推荐算法,但该算法依赖大量用户对待预测项目的评分,在数据稀疏的情况下用户评分的可靠性对推荐结果的影响很大。该文首先利用Lens Kit工具下的Slope One算法和某在线图书网站的数据进行了图书推荐实验,分析了三个导致图书推荐效果不好的原因,然后提出了稀疏数据下的基于预测评分可靠性加权的Slope One算法优化,最后对优化后的推荐算法进行对比实验,证明改进后的图书推荐系统在内存使用率和推荐质量上均有明显提高。  相似文献   

4.
5.
田松瑞 《软件》2016,(4):57-59
Slope One算法基于简单的线性回归模型,通过减少响应时间和维护难度,显著提高了推荐性能。然而Slope One算法没有考虑用户内部的关联,同等地使用各个用户数据进行预测,容易造成偏差,影响推荐质量。本文提出了一种改进的Slope One算法,它将用户相似度纳入考虑并且对评分偏差计算公式进行了修正。基于项目的 Slope One算法结合基于用户的协同过滤算法,提出新的混合推荐算法US-Slope One。在Movie Lens数据集上的实验结果表明,该算法与原Slope One算法相比具有更好的预测准确度和推荐质量。  相似文献   

6.
一种改进的Slope One协同过滤算法   总被引:1,自引:0,他引:1  
相对传统的基于用户项目评分的协同过滤算法,Slope One算法简单、高效。但该算法依赖于大量用户对待预测项目的评分,如果对预测项目评分的用户较少,没有考虑用户本身的喜好,将对评分预测的结果有影响。因此,引入描述关键字的语义相似度,利用关键字相似性度量项目间的相似程度,并结合该用户对其他项目的评分,提出一种基于项目语义相似度的改进Slope One算法,并在标准的MovieLens数据集上进行预测实验。实验数据表明,相对于原算法,改进的算法在一定程度上提高了预测的准确性。  相似文献   

7.
针对Web服务的可靠性预测已成为服务计算领域的研究热点。为提高已有的针对Web服务可靠性预测方法的性能,提出两种方法。首先,针对基于协同过滤的Web服务可靠性预测方法,对用户的相似性、服务相似性以及预测值的计算方法都进行了适当的改进;其次,将k-means聚类算法与Slope One算法进行集成,进而用于开展Web服务可靠性预测。实验结果表明,相较已有方法,本文所提出的方法具有更高的预测精度。  相似文献   

8.
为有效解决传统Slope One算法推荐精度低的问题,提出一种动态k近邻辅助多权值Slope One算法。结合k近邻的思想,对相似度计算方法改进,筛选大于相似度阈值的近邻用户集进行平均评分偏差计算,减少大量干扰评分数据带来的影响。使用用户相似度、用户综合信任度和项目相似度作为权值加权到评分预测当中,进一步提升推荐精度。将算法应用于MovieLens数据集,与几种算法进行对比,实验结果表明,改进的算法均优于其它几种算法,有效提高了推荐的质量。  相似文献   

9.
经典的Slope One算法采用线性回归模型对目标项目进行预测评分,但在项目评分偏差表构建过程中产生了部分噪声数据,影响了算法的推荐性能。为了解决该问题,建立了一种基于局部近邻Slope One协同过滤推荐算法。算法计算了当前活跃用户针对不同推荐商品的近邻用户集,其邻居用户集根据目标项目的不同而动态变化;根据活跃用户关于不同目标项目的邻居用户数据来进一步优化项目之间的平均偏差,进而产生推荐。对比实验说明,该算法在MovieLens数据集上具有较高推荐精度。  相似文献   

10.
针对传统Slope One推荐算法在稀疏数据集上预测准确率较低的问题,提出一种基于图嵌入的加权Slope One算法。本文算法首先以融合时间信息的用户相似度为边权建立用户关联图,对该图进行图嵌入得到用户特征向量,然后基于Canopy聚类对用户进行类内加权Slope One推荐。另外,为优化算法性能,本文算法基于Spark计算框架实现。实验结果表明,对比传统的加权Slope One,本文算法在稀疏数据集和显式、隐式评分数据集上的推荐效果和评分预测准确率都更优。  相似文献   

11.
针对Slope One推荐算法在数据稀疏性高时推荐结果不够精准的问题进行研究,将关联规则思想与加权分析的方法相结合,提出基于关联规则策略加权的Slope One算法,从用户评分和项目特征两个角度对算法进行改进。实验采用FilmTrust数据集,其中包含1 508个用户对2 071部电影共35 497条评分记录。经多次实验测试分析,提出的方法切实达到了预期优化效果,也为后续算法的更多元化改进方案探究提供了研究基础。  相似文献   

12.
针对原始Slope One算法计算推荐预测值时忽略了项目之间的相似性,以及大数据时代下推荐效率低下的问题,提出基于Spark平台的聚类加权Slope One推荐算法。通过Canopy-K-medoids聚类算法生成最近邻居集合;在最近邻集中用Slope One算法上加权项目之间的相似性进行推荐预测;在Spark平台上实现并行化。通过在电影数据集上的实验得出,基于Spark平台的优化算法与传统Slope One算法、加权项目相似度的Slope One算法相比,提高了推荐精度。  相似文献   

13.
在数据集稀疏的情况下传统的Slope One算法推荐效果差、精确度低,并且该算法对所有用户一视同仁,没有考虑用户间相似性和差异性的情况;同时,随着数据量越来越大,实时性也逐渐变差.针对以上问题,进行加权Slope One算法优化的研究.首先,利用模糊聚类技术将不同类型用户进行分类,减少最近邻搜索范围,降低计算复杂度;然...  相似文献   

14.
针对传统Slope One算法在相似性计算时未考虑项目属性信息和时间因素对项目相似性计算的影响,以及推荐在当前大数据背景下面临的计算复杂度高、处理速度慢的问题,提出了一种基于聚类和Spark框架的加权Slope One算法。首先,将时间权重加入到传统的项目评分相似性计算中,并引入项目属性相似性生成项目综合相似度;然后,结合Canopy-K-means聚类算法生成最近邻居集;最后,利用Spark计算框架对数据进行分区迭代计算,实现该算法的并行化。实验结果表明,基于Spark框架的改进算法与传统Slope One算法、基于用户相似性的加权Slope One算法相比,评分预测准确性更高,较Hadoop平台下的运行效率平均可提高3.5~5倍,更适合应用于大规模数据集的推荐。  相似文献   

15.
Slope One算法就是一种基于项目的协同过滤推荐算法,它对项目属性内和属性间依赖耦合关系的考虑较为欠缺,推荐效果并不理想。基于此,本文提出一种基于耦合关系的加权Slope One算法。该算法构造了项目属性耦合关系模型和用户属性耦合关系模型,采取用户耦合相似度和项目耦合相似度对加权Slope One算法进行改进。本算法在Movielens数据集上进行验证表明具有较高的推荐准确度。  相似文献   

16.
沈学利  李子健  赫辰皓 《计算机应用》2005,40(10):2789-2794
针对推荐系统的数据稀疏性导致的推荐效果不佳的问题,提出一种基于评分填充与信任信息的混合推荐的算法RTWSO(Real-value user item restricted Boltzmann machine Trust WSO)。首先,使用改进的受限玻尔兹曼机模型对评分矩阵进行填充,以缓解评分矩阵的稀疏性问题;其次,从信任关系中提取信任与被信任关系,并通过基于矩阵分解的隐含信任关系相似度来解决信任信息稀疏的问题,而且对原有算法进行了包含信任信息的修正,以提高推荐准确度;最后,通过加权Slope One(WSO)算法对矩阵填充与信任相似度信息加以整合,并对评分数据进行预测。在Epinions与Ciao数据集中验证算法性能,可见所提出混合推荐算法较组成算法在推荐准确度上提升3%以上,较现有社会化推荐算法SocialIT(Social recommendation algorithm based on Implict similarity in Trust)在推荐准确度上提升1.2%以上。实验结果表明,所提出的基于评分填充与信任信息的混合推荐算法在一定程度上提高了推荐准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号