首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
陈黎飞  郭躬德 《软件学报》2013,24(11):2628-2641
类属型数据广泛分布于生物信息学等许多应用领域,其离散取值的特点使得类属数据聚类成为统计机器学习领域一项困难的任务.当前的主流方法依赖于类属属性的模进行聚类优化和相关属性的权重计算.提出一种非模的类属型数据统计聚类方法.首先,基于新定义的相异度度量,推导了属性加权的类属数据聚类目标函数.该函数以对象与簇之间的平均距离为基础,从而避免了现有方法以模为中心导致的问题.其次,定义了一种类属型数据的软子空间聚类算法.该算法在聚类过程中根据属性取值的总体分布,而不仅限于属性的模,赋予每个属性衡量其与簇类相关程度的权重,实现自动的特征选择.在合成数据和实际应用数据集上的实验结果表明,与现有的基于模的聚类算法和基于蒙特卡罗优化的其他非模算法相比,该算法有效地提高了聚类结果的质量.  相似文献   

2.
徐鲲鹏  陈黎飞  孙浩军  王备战 《软件学报》2020,31(11):3492-3505
现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并提出一种高效求解该目标函数的优化方法.最后,定义了一种类属型数据核子空间聚类算法.该算法不仅在非线性空间中考虑了属性间的关系,而且在聚类过程中赋予每个属性衡量其与簇类相关程度的特征权重,实现了类属型属性的嵌入式特征选择.还定义了一个聚类有效性指标,以评价类属型数据聚类结果的质量.在合成数据和实际数据集上的实验结果表明,与现有子空间聚类算法相比,核子空间聚类算法可以发掘类属型属性间的非线性关系,并有效提高了聚类结果的质量.  相似文献   

3.
对于概率模糊聚类,贝叶斯模糊聚类方法表现出良好的聚类性能,它从先验知识和贝叶斯理论的角度出发,采用最大后验概率理论处理模糊划分,进而获取最终的聚类结果.该方法有效地结合了概率论和模糊论两者的优点,较之传统的模糊聚类算法(如FCM算法),该方法能够获取全局最优解并估计聚类个数.但在大数据时代,该方法较高的时间复杂度限制了它的实用性.针对此问题,首先在贝叶斯模糊聚类中引入加权机制,提出了加权贝叶斯模糊聚类算法;然后将其与单趟聚类框架相结合,提出了面向大规模数据的快速单趟贝叶斯模糊聚类算法,并从理论上对相关性质进行了较为深入的分析.所提出的单趟贝叶斯模糊聚类新算法较之贝叶斯模糊聚类算法在时间复杂度和收敛性上均有着不同程度的性能提升,同时继承了贝叶斯模糊聚类的良好的聚类性能.最后,相关实验结果亦验证了所提方法的有效性.  相似文献   

4.
相似性度量是聚类分析的重要基础,如何有效衡量类属型符号间的相似性是相似性度量的一个难点.文中根据离散符号的核概率密度衡量符号间的相似性,与传统的简单符号匹配及符号频度估计方法不同,该相似性度量在核函数带宽的作用下,不再依赖同一属性上符号间独立性假设.随后建立类属型数据的贝叶斯聚类模型,定义基于似然的类属型对象-簇间相似性度量,给出基于模型的聚类算法.采用留一估计和最大似然估计,提出3种求解方法在聚类过程中动态确定最优的核带宽.实验表明,相比使用特征加权或简单匹配距离的聚类算法,文中算法可以获得更高的聚类精度,估计的核函数带宽在重要特征识别等应用中具有实际意义.  相似文献   

5.
杨天鹏  陈黎飞 《计算机应用》2018,38(10):2844-2849
针对传统K-means型算法的"均匀效应"问题,提出一种基于概率模型的聚类算法。首先,提出一个描述非均匀数据簇的高斯混合分布模型,该模型允许数据集中同时包含密度和大小存在差异的簇;其次,推导了非均匀数据聚类的目标优化函数,并定义了优化该函数的期望最大化(EM)型聚类算法。分析结果表明,所提算法可以进行非均匀数据的软子空间聚类。最后,在合成数据集与实际数据集上进行的实验结果表明,所提算法有较高的聚类精度,与现有K-means型算法及基于欠抽样的算法相比,所提算法获得了5%~50%的精度提升。  相似文献   

6.
数值型和分类型混合数据的模糊K-Prototypes聚类算法   总被引:15,自引:0,他引:15       下载免费PDF全文
陈宁  陈安  周龙骧 《软件学报》2001,12(8):1107-1119
由于数据库经常同时包含数值型和分类型的属性,因此研究能够处理混合型数据的聚类算法无疑是很重要的.讨论了混合型数据的聚类问题,提出了一种模糊K-prototypes算法.该算法融合了K-means和K-modes对数值型和分类型数据的处理方法,能够处理混合类型的数据.模糊技术体现聚类的边界特征,更适合处理含有噪声和缺失数据的数据库.实验结果显示,模糊算法比相应的确定算法得到的结果准确度高.  相似文献   

7.
加权模糊C均值文本聚类算法研究及仿真   总被引:1,自引:0,他引:1  
研究文本聚类问题.传统的文本聚类算法存在着假设各特征词对聚类结果影响相同,聚类准确率较低的缺陷.还有一些算法通过加权的方法,能赋予重要特征词较大的权重,却造成了算法时间复杂度的增加.为解决上述问题,提出了一种新的属性加权模糊C均值文本聚类算法.算法能在迭代过程中标注出每一特征词的权重,却不影响算法的执行效率.使得类内距离之和较小的属性,权值较大;反之则权值较小.经多次仿真证明,提出的文本聚类算法在运算速度、准确率和标注不同属性的重要程度方面都有一定的优势.为文档自动文摘、数字图书馆服务和文档集合自动整理等系统的设计提供了可靠的依据.  相似文献   

8.
不平衡数据集类别分布严重倾斜,传统的聚类算法由于以提高整体学习性能为目标,往往偏向于聚集多数类,而忽视更有价值的稀有类.本文提出一种基于迭代的特征加权聚类算法,根据当前聚类后簇的特点以及特征重要性度量函数确定特征权值,利用所得权值进行下一轮聚类,直到权值稳定后结束迭代.在多个UCI不平衡数据集上的实验效果表明,本文算法能够较好地识别出重要特征并提高它们的权重,避免聚类算法过度偏向多数类,有效地提高了聚类性能.  相似文献   

9.
针对区间型数据的模糊c均值聚类(IFCM)算法在实际应用中的不足,将可能性理论引入区间型数据的聚类问题,通过放松样本隶属度的约束条件和修正IFCM算法的目标函数,提出一种区间型数据的可能性聚类算法。通过仿真模拟实验和平均CR指标分析,结果表明:在包含噪声和孤立点等代表性比较差的样本数据的聚类问题中,该算法明显优于IFCM算法,能有效地降低噪声对聚类效果的影响。  相似文献   

10.
彭兴媛  刘琼荪 《计算机应用》2011,31(11):3072-3074
朴素贝叶斯(NB)分类算法虽是一种简单且有效的分类方法,但其条件属性独立性假设忽略了属性变量间存在的相关性。考虑到条件独立性假设对分类效果的影响,提出一种新的将条件属性进行聚类的分组技术,不仅避免了传统朴素贝叶斯算法假设各条件属性间独立的这一缺陷,而且反映出了在不同类别情况下条件属性间具有的不同依赖程度。经过对UCI的几个数据集的仿真实验,结果表明了新算法的有效性。  相似文献   

11.
Due to data sparseness and attribute redundancy in high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. To effectively address this issue, this paper presents a new optimization algorithm for clustering high-dimensional categorical data, which is an extension of the k-modes clustering algorithm. In the proposed algorithm, a novel weighting technique for categorical data is developed to calculate two weights for each attribute (or dimension) in each cluster and use the weight values to identify the subsets of important attributes that categorize different clusters. The convergence of the algorithm under an optimization framework is proved. The performance and scalability of the algorithm is evaluated experimentally on both synthetic and real data sets. The experimental studies show that the proposed algorithm is effective in clustering categorical data sets and also scalable to large data sets owning to its linear time complexity with respect to the number of data objects, attributes or clusters.  相似文献   

12.
张艳丽  郑诚 《微型机与应用》2011,30(3):64-66,72
提出一种基于属性分解的随机分组的改进方法,以提高聚类算法的稳定性和适用性。实验仿真结果表明,改进算法具有很好的稳定性和应用性。  相似文献   

13.
为了解决单一聚类算法存在结果不准确和随机性大,且现有算法对分类数据聚类时将其装换成数值型会产生误差等问题,提出了一种面向分类属性数据的聚类融合算法。算法利用原有分类属性值的差异产生聚类成员,然后采用相似度方法进行划分,通过寻求目标函数最小的划分来简化聚类过程。算法在UCI数据集上进行了验证,结果表明算法的效率和精度都优于现有算法,说明算法的设计和更新策略是有效的。  相似文献   

14.
陈韡  王雷  蒋子云 《计算机应用》2010,30(8):2003-2005
通过对基于K-prototypes算法对混合属性数据处理的聚类问题进行研究,改进了K-prototypes算法中分类属性相异度计算公式,使之能更加精确反映样本间的差异;在此基础上提出了一种用于处理混合属性数据的聚类算法,并将改进后的算法应用于英语借词数据的聚类分析中。实验结果表明,与K-prototypes算法相比,改进后的算法具有更好的稳定性和更高的精度。  相似文献   

15.
为了提高分类型数据集聚类的准确性和对广泛数据集聚类的适应性,引入3种核函数,再利用基于山方法的核K-means作分类型的数据聚类,核函数把分类型数据映射到高维特征空间,从而给缺乏测度的分类型数据引入了数值型数据的测度.改进后用多个公开数据集对这些方法进行了实验评测,结果显示这些方法对分类型数据的聚类是有效的.  相似文献   

16.
BIRCH混合属性数据聚类方法   总被引:1,自引:1,他引:1       下载免费PDF全文
数据聚类是数据挖掘中的重要研究内容。现实世界中的数据往往同时具有连续属性和离散属性,但现有大多数算法局限于仅处理其中一种属性,而对另一种采取简单舍弃的办法丢失聚类信息和降低聚类质量。一些能处理混合属性的算法又往往处理的属性过多,导致计算量的大增。提出了一种基于BIRCH算法的混合属性数据的聚类算法;在UCI数据集上的实验表明,文中提出的算法具有较好的性能。  相似文献   

17.
子空间聚类是高维数据聚类的一种有效手段,子空间聚类的原理就是在最大限度地保留原始数据信息的同时用尽可能小的子空间对数据聚类。在研究了现有的子空间聚类的基础上,引入了一种新的子空间的搜索方式,它结合簇类大小和信息熵计算子空间维的权重,进一步用子空间的特征向量计算簇类的相似度。该算法采用类似层次聚类中凝聚层次聚类的思想进行聚类,克服了单用信息熵或传统相似度的缺点。通过在Zoo、Votes、Soybean三个典型分类型数据集上进行测试发现:与其他算法相比,该算法不仅提高了聚类精度,而且具有很高的稳定性。  相似文献   

18.
针对大数据环境下K-means聚类算法聚类精度不足和收敛速度慢的问题,提出一种基于优化抽样聚类的K-means算法(OSCK)。首先,该算法从海量数据中概率抽样多个样本;其次,基于最佳聚类中心的欧氏距离相似性原理,建模评估样本聚类结果并去除抽样聚类结果的次优解;最后,加权整合评估得到的聚类结果得到最终k个聚类中心,并将这k个聚类中心作为大数据集聚类中心。理论分析和实验结果表明,OSCK面向海量数据分析相对于对比算法具有更好的聚类精度,并且具有很强的稳健性和可扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号