首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
杜培德  严华 《计算机应用》2021,41(2):537-543
针对严重的尺度变化和遮挡导致在不同密集场景人群计数任务中性能差的问题,在密集场景识别网络(CSRNet)的基础上通过增加多尺度特征融合结构并引入空间注意力机制,提出了一种多尺度空间注意力特征融合网络(MAFNet).在MAFNet进行特征提取之前,需要对添加了人头标记的场景图进行高斯滤波生成真实密度图;此外,MAFNe...  相似文献   

2.
特征表达是图像显著性检测的关键,现有方法所提取的特征缺乏一定的可辨识性.为此,提出多尺度上下文特征提取机制和注意力循环机制来解决这一问题.多尺度上下文特征提取机制通过空洞卷积增大高层特征的感受野来获取丰富的上下文语义特征,并采用向量聚合策略对特征进行融合.为增强融合特征的可辨识性,利用注意力机制自适应地对卷积特征增加权重以区分每个像素的重要性,使注意力集中于显著性区域,并抑制背景中的干扰信息.在此基础上,采用循环网络能够有效地在空间位置上对卷积特征进行逐步细化,进一步调整了显著性区域及其边缘,从而生成精确的显著图.该方法在5个常用的数据集上与8种相关方法进行了比较.实验结果表明,该方法不仅能够生成更加准确与完整的显著图,而且其MAE和最大F-measure量化性能也有所提升.  相似文献   

3.
卷积神经网络在自然场景文本检测中的应用,大大提高了文本检测的准确性.但由相机视角和文本本身引起的尺度多变性以及文本分布的多样性仍然给文本检测带来了挑战.从解决文本尺度多变性的角度出发,本文提出了一个新的多层次特征融合模块,在特征金字塔融合不同层级特征的同时,额外添加了一个空洞卷积池化模块分支,在不降低特征尺度的同时拥有...  相似文献   

4.
为分析商业区人群流动情况,或避免人群踩踏等公共事件的发生,通常采用人群计数方法统计监控图像中的人数信息,从而达到提前预警的效果。受目标遮挡、背景干扰、多尺度变化等因素的影响,现有的人群计数方法在统计人数信息的过程中存在误算或漏算的问题,导致准确率降低。提出一种基于注意力机制与上下文密度图融合的人群计数网络CADMFNet。以VGG16的部分卷积层作为前端网络,通过引入上采样融合模块对输入的特征图进行上下文特征融合,将不同膨胀率的膨胀卷积作为后端网络,生成高质量的中间密度图。在此基础上,采用上下文注意力模块融合不同层级的中间密度图,获得精细的人群密度图。实验结果表明,该网络在Mall数据集上的平均绝对误差和均方根误差分别为1.31和1.59,相比CSRNet、MCNN等网络,能够有效提高计数的准确度,并且具有较优的鲁棒性。  相似文献   

5.
倪童  桑庆兵 《计算机工程》2022,48(4):262-268
课堂教学是整个教育任务中的重要环节,教育信息化的发展为提升教学管理水平提供了更多方案。为加强教学情况正反馈,提高课堂抬头率检测的准确性,提出一种结合注意力机制和特征融合的新型检测算法。将原图及视觉特征RGB difference作为网络输入,令其经过特征提取网络后得到信息更丰富的深层特征。在此基础上,提出一种改进的注意力模型(ICBAM)并加载至特征提取网络上,ICBAM使用通道注意力模块和空间注意力模块并行的双流结构,提升网络的特征提取能力。在通道注意力和空间注意力中加入空洞卷积以过滤输入特征中的冗余特征,减少网络对背景等无用特征的关注。此外,设计精炼模块优化预测结果,并在所提算法的基础上实现课堂行为分析软件的开发与应用。实验结果表明,该算法在抬头率检测数据集RDS上的平均抬头率误差为15.648%,相比于SolvePnP等主流检测算法具有更低的误差率。  相似文献   

6.
为了满足锂离子电池电极缺陷检测精度与实时性的需求,解决电极图像背景噪声复杂、缺陷微小且对比度低等问题,提出一种基于注意力机制与多尺度特征融合的电极缺陷YOLO检测算法.在YOLOv4的基础上,首先,将SE(squeeze-and-excitation)注意力模块嵌入特征提取主干网络中,区分feature map中不同通道的重要性,强化目标区域的关键特征,提高网络的检测精度;其次,加入融合空洞卷积的池化金字塔(ASPP)结构,增大网络感受野的同时最大程度地保留多尺度特征信息,提高算法对小目标的检测性能;然后,设计一种多尺度稠密特征金字塔,在三尺度特征图的基础上增加一个浅层特征,采用稠密连接的方式融合特征,提升浅层细节特征与高级语义信息的融合能力,增强对微小缺陷特征的提取;最后,采用$ K $-means++算法聚类先验框,引入focal loss损失函数增大小目标样本的损失权重,有效提高网络学习的收敛速度.实验结果表明,所提算法较原YOLOv4模型的mAP值提升6.42%,较其他常用算法综合性能上有着较大的优势,可较好地满足实际工业生产的实时监测需求.  相似文献   

7.
针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两个层面提高算法的特征表达能力,并使用ROI Align代替ROI Pooling,基于K-Means重新设计RPN(Region Proposal Networks)锚框尺寸,减小目标回归过程的坐标偏差。实验表明,该算法能够提升无人机图像目标检测精度,在RSOD-Dataset和无人机图像数据集上,mAP分别达到92.52%和98.07%。  相似文献   

8.
许华杰  杨洋  李桂兰 《计算机科学》2021,48(10):220-225
材质识别旨在识别自然材质图像中的主要对象及其所属材料类别.针对材质图像数据集通常数据量少、人工标注局部纹理区域困难所导致的材质识别准确率低的问题,提出了一种基于注意力机制和深度卷积神经网络的材质识别方法,该方法的核心是材质识别深度卷积神经网络(MaterialNet).MaterialNet利用深度残差网络对图像进行特...  相似文献   

9.
针对语义SLAM(simultaneous localization and mapping)中语义分割速度较慢,实时性较低、占用资源过多等问题,提出一种含有自适应通道注意力机制的轻量级Mask R-CNN网络,由于原有的语义分割网络里的残差网络复杂,且应用环境在室内,环境较为简单,故该轻量级网络将原有复杂的主干网络中的ResNet-50利用深度可分离卷积与分组卷积改进为更加轻量的ResNet-DS-tiny(ResNet with depthwise separable convolutions),并加入自适应通道注意力机制。在自适应通道注意力模块中,利用加权方式对输入的RGB-D图像从空间和通道赋予不同的权重,增强了特征的表达能力。此外,为了轻量化特征金字塔,使用使用不同空洞率的空洞卷积来提取不同大小感受野的特征信息,有效地获取了多尺度的特征。相较于传统的特征金字塔,空洞卷积减少了参数量。在更充分获取 RGB 信息特征的同时,提升了语义分割系统的实时性并减少了资源占用。  相似文献   

10.
为了降低遥感图像中尺寸较大或长宽比变化极端等类型目标对检测精度的不利影响,提出一种基于YOLOv5的改进算法。首先,设计多尺度特征融合模块,通过引入不同膨胀率的残差膨胀卷积块以获得更大感受野,提高对长宽比变化极端目标的检测能力;其次,引入全局-局部注意力,通过分解大核注意力以获得空间和通道维度的长期依赖性和适应性,实现动态提取丰富的全局上下文信息,提高网络对大尺寸目标的检测性能。在DOTA数据集上的消融实验证明了该算法的有效性,mAP达到77.05%,较改进前的模型提升了1.66%,亦优于主流算法,有效改善了遥感图像中目标尺寸过大或长宽比变化极端带来的问题。  相似文献   

11.
为解决油田作业现场烟火预警依赖人工巡检、不能及时发现等问题, 本文提出了改进的YOLOv4烟火检测算法. 具体针对摄像头距离远导致的烟火目标小、不易被识别的问题, 改进了网络特征融合部分, 并添加金字塔卷积PyConv, 增强细节提取能力、增大局部感受野. 针对油田作业现场的复杂背景干扰问题, 加入注意力机制, 用于加强网络对重要特征的权重计算, 同时减少非关键数据的计算量. 最后通过聚类算法对目标样本锚定框优化, 利用自建烟火数据集进行实验, 实验证明, 改进后的算法平均精度值MAP达到90%以上, 能够在复杂背景下对较小烟火目标保持较高的精度, 并且具有较快的检测速度, 满足了油田烟火检测高效性和实时性的要求.  相似文献   

12.
为解决油田作业现场烟火预警依赖人工巡检、不能及时发现等问题, 本文提出了改进的YOLOv4烟火检测算法. 具体针对摄像头距离远导致的烟火目标小、不易被识别的问题, 改进了网络特征融合部分, 并添加金字塔卷积PyConv, 增强细节提取能力、增大局部感受野. 针对油田作业现场的复杂背景干扰问题, 加入注意力机制, 用于加强网络对重要特征的权重计算, 同时减少非关键数据的计算量. 最后通过聚类算法对目标样本锚定框优化, 利用自建烟火数据集进行实验, 实验结果证明, 改进后的算法模型具有相当高的性能, MAP达到90%以上, 能够在复杂背景下对较小烟火目标保持较高的识别率, 说明改进后的算法在油田作业现场烟火识别中具有较高实用价值.  相似文献   

13.
本文针对场景中目标多样性和尺度不统一等现象造成的边缘分割错误、特征不连续问题,提出了一种交叉特征融合和RASPP驱动的场景分割方法.该方法以交叉特征融合的方式合并编码器输出的多尺度特征,在融合高层语义信息时使用复合卷积注意力模块进行处理,避免上采样操作造成的特征信息丢失以及引入噪声的影响,细化目标边缘分割效果.同时提出了深度可分离残差卷积,在此基础上设计并实现了结合残差的金字塔池化模块——RASPP,对交叉融合后的特征进行处理,获得不同尺度的上下文信息,增强特征语义表达.最后,将RASPP模块处理后的特征进行合并,提升分割效果.在Cityscapes和CamVid数据集上的实验结果表明,本文提出方法相比现有方法具有更好的表现,并且对场景中的目标边缘有更好的分割效果.  相似文献   

14.
无人机航拍图像具有尺度差异大、背景干扰和目标模糊等特点, 给小目标检测带来诸多挑战. 针对这些问题, 提出一种高效的无人机航拍小目标检测算法. 首先利用空洞卷积增大感受野、保持细节分辨率的特点, 设计并行空洞卷积模块; 其次设计注意力上下采样分支模块, 利用闸门机制对提取到的特征进行选择, 强化特征表达; 最后结合小目标检测头设计并行空洞卷积注意力金字塔网络, 对多尺度特征进行特征融合. 在VisDrone2023数据集和DOTA数据集上, 所提出算法在小目标检测的平均准确率均值均优于其他主流算法, 相较于基线方法在平均准确率均值上提升7.3 %, 参数量减少0.58 M, FPS提升11.2, 达到43.5, 验证了所提算法的高效性. 在复杂场景ExDark数据集上, 所提出算法在平均准确率均值上优于其他低光增强模型和暗检测器, 相较于PE-YOLO在平均准确率均值上提升2.4 %, 验证了所提算法的鲁棒性和实用性.  相似文献   

15.
水下目标检测是水下作业中不可或缺的重要技术. 针对水下图像中背景复杂、待检测目标大小形状不同及存在重叠与遮挡等问题, 本文提出了一种基于双分支卷积网络的水下目标检测算法. 首先, 采用两个并行卷积神经网络作为骨干网络, 其中一个分支引入ECA注意力机制, 另一个分支采用可形变卷积, 以提高模型的特征提取能力. 其次, 使用AFF模块有效融合两个分支提取到的特征. 最后, 采用PANet金字塔结构作为颈部网络, 实现多尺度特征融合, 同时增加高分辨率检测头, 以进一步提高对小目标的敏感性. 本文在公开水下数据集RUOD上进行对比实验, 结果表明, 本文的改进算法在RUOD数据集上的mAP50达到了86.8%, 相较于基准YOLOv8n模型提升了2.7%, 并且相比于同规模的其他常见目标检测模型表现更优.  相似文献   

16.
车辆检测是智能交通系统重要的一个研究方向.针对监控视角下的车辆检测问题,提出了一种改进YOLOX算法的车辆检测方法.使用网络深度更小的YOLOX_S模型,对网络结构改进.使用GHOST深度可分离卷积模块代替部分传统卷积,在保证模型检测精度的同时减少模型参数;将CBAM注意力模块融合到特征提取网络中,并添加特征增强结构,加强特征提取网络获得的特征图语义信息,增强提取网络对目标的检测能力;通过使用CIoU_loss优化损失函数,提高模型边界框的定位精度.测试实验结果表明,改进后的网络识别准确率提升了2.01%,达到95.45%,证明了改进方法的可行性.  相似文献   

17.
张再腾  张荣芬  刘宇红 《控制与决策》2022,37(10):2487-2496
近年来,随着深度学习的蓬勃发展,行人属性识别得到了广泛的研究.但是,由于属性复杂且多样化、图像质量差、视角遮挡等困扰,难以捕获图像中的细粒度属性特征,具有很大的挑战性.对此,基于深度学习,提出多尺度残差注意网络(MRAN)用于行人属性识别,以Resnet50为主体架构,使用轻量级的金字塔卷积提供不同内核大小的并行卷积以完成多尺度信息的提取,嵌入注意力模块以关注属性存在的关键区域并挖掘属性内部联系;其次,使用特征金字塔融合策略,更充分地提取和融合多尺度特征.网络结合了多尺度学习、注意力机制和残差学习的思想,使网络提取出更丰富、更细腻的特征.最后,在PETA和PA100K两个数据集上进行实验研究,结果表明,所提出方法优于现有的研究方法.通过消融研究验证整个网络体系结构的3个组成部分的有效性和先进性,且所提出网络具有高准确性和低复杂度的双向优化.  相似文献   

18.
针对当前主流缺陷检测模型参数量大、计算复杂度高,难以在计算资源有限的嵌入式设备上部署的问题,提出了一种轻量化钢材表面缺陷检测模型YOLO-LSNet。首先,为了降低模型的参数量和计算复杂度,提出了一种轻量化卷积模块MSConv。其次,提出M-BiFPN网络用于深浅层特征信息的融合。最后,用SIoU损失函数替换CIoU损失函数,加快网络的收敛速度。实验结果表明,YOLO-LSNet模型在NEU-DET数据集上相较于基线网络YOLOv5,mAP提升了1.8%,模型参数下降了43.4%,计算量降低了36.1%。完成模型轻量化设计的同时,保证了模型的检测精度,具有良好的应用前景。  相似文献   

19.
针对矿石输送带上夹杂的废旧木头、钢钎、塑料导爆管等杂物会对后续选矿设备造成严重破环的问题,提出一种改进YOLOv3的矿石输送带杂物检测方法YOLO-Ore。将轻量级网络Mobilenetv2作为主干特征提取网络,利用深度可分离卷积和逆残差结构,缩减了模型容量,丰富了特征信息;将语义分割网络PSPnet中的金字塔池化模块PPM融入到特征提取过程当中,有效聚合不同尺度的上下文信息;引入注意力机制CBAM,同时在空间维度和通道维度上进行特征增强;对YOLOv3的FPN结构简化,删减参数冗余的卷积层,实现进一步的模型压缩。利用数据增广技术构建矿石杂物数据集,并对所提方法的有效性进行实验对比验证。结果表明,和原YOLOv3算法相比,所提方法YOLO-Ore能够准确快速地检测矿石输送带杂物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号