共查询到19条相似文献,搜索用时 62 毫秒
1.
目的 在基于深度学习的目标检测模型中,浅层特征图包含更多细节但缺乏语义信息,深层特征图则相反,为了利用不同深度特征图的优势,并在此基础上解决检测目标的多尺度问题,本文提出基于卷积核金字塔和空洞卷积的单阶段目标检测模型。方法 所提模型采用多种方式融合特征信息,先使用逐像素相加方式融合多层不同大小的特征图信息,然后在通道维度拼接不同阶段的特征图,形成具有丰富语义信息和细节信息的信息融合特征层作为模型的预测层。模型在锚框机制中引入卷积核金字塔结构,以解决检测目标的多尺度问题,采用空洞卷积减少大尺寸卷积核增加的参数量,合理地降低锚框数量。结果 实验结果表明,在PASCAL VOC2007测试数据集上,所提检测框架在300×300像素的输入上检测精度达到79.3% mAP(mean average precision),比SSD(single shot multibox detector)高1.8%,比DSSD(deconvolutional single shot detector)高0.9%。在UCAS-AOD遥感数据测试集上,所提模型的检测精度分别比SSD和DSSD高2.8%和1.9%。在检测速度上,所提模型在Titan X GPU上达到21帧/s,速度超过DSSD。结论 本文模型提出在两个阶段融合特征信息并改进锚框机制,不仅具有较快的检测速度和较高的精度,而且较好地解决了小目标以及重叠目标难以被检出的问题。 相似文献
2.
无人机(UAV)航拍图像视野开阔,图像中的目标较小且边缘模糊,而现有单阶段多框检测器(SSD)目标检测模型难以准确地检测航拍图像中的小目标。为了有效地解决原有模型容易漏检的问题,借鉴特征金字塔网络(FPN)提出了一种基于连续上采样的SSD模型。改进SSD模型将输入图像尺寸调整为 ,新增Conv3_3特征层,将高层特征进行上采样,并利用特征金字塔结构对VGG16网络前5层特征进行融合,从而增强各个特征层的语义表达能力,同时重新设计先验框的尺寸。在公开航拍数据集UCAS-AOD上训练并验证,实验结果表明,所提改进SSD模型的各类平均精度均值(mAP)达到了94.78%,与现有SSD模型相比,其准确率提升了17.62%,其中飞机类别提升了4.66%,汽车类别提升了34.78%。 相似文献
3.
基于卷积神经网络目标检测算法的浅层特征图包含丰富的细节信息,但缺乏语义信息,而深层特征图则相反.为充分利用浅层和深层特征图特征,解决多尺度目标检测问题,提出一种新的单阶段目标检测算法(AFE-SSD).以SSD算法为基础,分别对该算法中相邻的2个特征图进行特征融合,从而丰富浅层特征层的语义信息.通过对并行空洞卷积机制进... 相似文献
4.
随着深度学习的不断发展,目标检测技术逐步从基于传统的手工检测方法向基于深度神经网络的检测方法转变。在众多基于深度学习的目标检测方法中,基于深度学习的单阶段目标检测方法因其网络结构较简单、运行速度较快以及具有更高的检测效率而被广泛运用。但现有的基于深度学习的单阶段目标检测方法由于小目标物体包含的特征信息较少、分辨率较低、背景信息较复杂、细节信息不明显以及定位精度要求较高等原因,导致在检测过程中对小目标物体的检测效果不理想,使得模型检测精度降低。针对目前基于深度学习的单阶段目标检测方法存在的问题,研究了大量基于深度学习的单阶段小目标检测技术。首先从单阶段目标检测方法的AnchorBox、网络结构、交并比函数以及损失函数等几个方面,系统地总结了针对小目标检测的优化方法;其次列举了常用的小目标检测数据集及其应用领域,并给出在各小目标检测数据集上的检测结果图;最后探讨了基于深度学习的单阶段小目标检测方法的未来研究方向。 相似文献
5.
针对现有的目标检测算法在提取特征时往往仅使用单一尺度大小的卷积核,忽略了不同尺度特征感受野的差异,从而影响网络对不同尺度目标的检测效果的问题,提出一种基于多分支并行空洞卷积的多尺度目标检测算法.首先,采用基础网络VGG-16对待检测图像进行特征提取;其次,在网络的低层引入多分支并行空洞卷积,对不同扩张率的空洞卷积进行融... 相似文献
6.
现有依赖CNN的目标检测算法常采用特征融合的建模方式来丰富特征表达,虽然该方法一定程度上能有效改善多尺度目标检测,但是在针对复杂场景进行检测时却没有显著的提升。这主要受限于三个问题的影响:长路径特征融合造成的特征间相关性损失;仅设计了单方向的融合连接,忽略了反方向的语义信息弥补;忽略了有效感受野(effective receptive field,ERF)在多尺度检测中的重要性。针对这三点分别设计了二次融合结构(double fusion structure,DFS)、多分支融合模块(multi branch fusion module,MBFM)和感受野增强模块(receptive field enhance module,RFEM)。该方法利用DFS缩短特征层级间的相对路径,然后通过MBFM来同时弥补上层和下层的语义信息缺失,并使用RFEM建模特征通道,增大ERF区域。最终模型在PASCAL VOC 2007测试数据集上达到了85.4%的平均精度均值(mean average precision,mAP),与依赖传统建模方式的检测算法相比,提出的方法提高了2.6%。 相似文献
7.
8.
9.
针对现有目标检测算法在检测时易受到图像尺度变化、目标间遮挡或截断等因素影响的问题,对卷积神经网络(convolutional neural network,CNN)中不同层次的特征进行了研究,提出了一种融合深度网络卷积特征的目标检测算法。算法采用多阶段的特征复用和特征融合减少特征间相关性的损失,最终在PASCAL VOC 2007测试数据集上达到了84.21%的mAP (mean average precison,平均精度均值)值;与未使用特征融合方法以及使用传统特征融合的方法相比,提出的方法分别提高了4.41%和2.71%。 相似文献
10.
目标检测在自然场景和遥感场景中的研究极具挑战。尽管许多先进的算法在自然场景下取得了优异的成果,但是遥感图像的复杂性、目标尺度的多样性及目标密集分布的特性,使得针对遥感图像目标检测的研究步伐缓慢。本文提出一个新颖的多类别目标检测模型,可以自动学习特征融合时的权重,并突出目标特征,实现在复杂的遥感图像中有效地检测小目标和密集分布的目标。模型在公开数据集DOTA和NWPU VHR-10上的实验结果表明检测效果超过了大多数经典算法。 相似文献
11.
针对汽车零部件回收工厂在实际复杂工况下的零件检测效果不佳导致不能实现精准抓取从而影响生产效率的问题,提出了一种基于改进单次多框检测(SSD)算法的机器人抓取系统,可实现零件检测、分类、定位及抓取任务。首先,通过改进SSD模型检测目标零件,得到零件位置和类别信息;其次,通过Kinect相机标定与手眼标定将像素坐标系转换到机器人世界坐标系,实现零件在机器人空间坐标系下的定位;然后,通过机器人正逆运动学建模与轨迹规划,完成目标零件抓取任务;最后,对整个集成抓取系统进行了零件识别分类、定位到抓取验证实验。实验结果表明:复杂工况下,所提系统的零件抓取平均成功率达到95%,满足零件抓取的实际生产需求。 相似文献
12.
13.
14.
针对人体运动目标的实时检测与定位问题,采用深度学习的方法进行研究.在Caffe框架下,采用SSD (Single Shot multibox Detector)检测方法.以VGG16作为基础网络模型,增加额外特征卷积层,提取多尺度的卷积特征.然后对实验数据集进行迭代训练,得到运动目标检测模型.利用训练好的模型,通过2路摄像机检测运动目标,并双目视觉定位.实验结果表明,整个系统运行速度可达40 fps,在10 m×10 m的场景下,平均定位误差在6 cm以内,在速度和精度上均有很好的表现,为大中型场景的人体运动实时检测定位问题提供了有效的解决方案. 相似文献
15.
16.
本文面向光学遥感图像目标检测应用,针对光学遥感图像中的典型目标一飞机和汽车,提出一种改进的SSD模型:首先在SSD (Single Shot multibox Detector)网络模型基础上引入多尺度特征融合模块,实现深层特征与浅层特征的融合以获得更多的特征上下文信息,增强网络对目标特征的提取能力;其次根据数据集目标样本尺寸分布特征进行聚类分析获得更准确的默认目标框参数,从而有效提升网络对目标位置信息的提取能力.将本文模型与SSD及YOLOv3模型在常用遥感图像目标检测数据集上进行对比,目标检测精度均有较大提升,验证了该模型的有效性. 相似文献
17.
目的 海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。为此,在标准的SSD(single shot multiBox detector)目标检测模型基础上,结合Xception深度可分卷积,提出一种轻量SSD模型用于海面目标检测。方法 在标准的SSD目标检测模型基础上,使用基于Xception网络的深度可分卷积特征提取网络替换VGG-16(Visual Geometry Group network-16)骨干网络,通过控制变量来对比不同网络的检测效果;在特征提取网络中的exit flow层和Conv1层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量SSD目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。结果 为证明本文模型的有效性,进行了多组对比实验。实验结果表明,模型轻量化导致特征表达能力降低,从而影响检测精度。相对于标准的SSD目标检测模型,本文模型在参数量降低16.26%、浮点运算量降低15.65%的情况下,浮标的平均检测精度提高了1.1%,漏检率减小了3%,平均精度均值(mean average precision,mAP)提高了0.51%,同时,保证了船的平均检测精度,并保证其漏检率不升高,在对数据集中的小目标进行测试时,本文模型也表现出较好的检测效果。结论 本文提出的海面小目标检测模型,能够在压缩模型的同时,保证模型的检测速度和检测精度,达到网络轻量化的效果,并且降低了小目标的漏检率,可以有效实现对海面小目标的检测。 相似文献
18.
针对SSD算法在检测全景视频图像车辆目标时存在准确率低、漏检率高的问题,构建了一种改进的SSD网络,命名为R-SSD,并提出了一种基于R-SSD的全景视频图像中车辆目标检测算法.在原SSD网络之前增加了一个RPN*网络,目的在于过滤负样本先验框并粗略调整先验框的位置和大小,为后续回归提供好的初始条件.在原SSD和RPN... 相似文献
19.
施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法.针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD模型结构进行改进,添加用以特征融合的分支网络,增强浅层特征图语... 相似文献