首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to establishing the correlation between the structure and properties of the LaCoO3 powders obtained by aqueous sol–gel method with citric acid and their sintering behavior in order to obtain fully densified ceramics with perovskite structure. Two types of cobalt and lanthanum reagents were used in synthesis, namely nitrates and acetates. The sintering was realized at temperatures ranging between 800 and 1200 °C for 2 h. The sintered samples were investigated by classical ceramic methods (shrinkage, density, porosity) and by structural and morphological investigations: XRD, SEM, AFM and XPS. The electrical properties of the samples were determined by impedance spectroscopy. The ceramics obtained with powders starting with acetates have presented a lower sintering ability as compared with the samples obtained from powders starting with nitrates. LaCoO3 ceramics with best properties was obtained from powders starting with nitrates sintered at 1100 °C.  相似文献   

2.
BaTiO3 (BT) powders were synthesized by the hydrothermal method for fabricating lead-free barium titanate piezoelectric ceramics. The obtained powders were washed by distilled water and 0.01N acetic acid solutions separately, and utilized to obtain piezoelectric ceramics by traditional sintering. BT ceramics with the highest piezoelectric properties (d33 value is over 190 pC/N) was obtained from the BT powder synthesized at 250 °C and washed by acetic acid solution. The influence of washing method and sintering temperature on the piezoelectric properties of BT ceramics were studied. The reasons were investigated by comparing the properties of BT powders and their compacts sintered at different temperature.  相似文献   

3.
Barium titanate powder was prepared by soft chemical process from polymeric precursors (modified Pechini process). The synthesized barium titanate (BT) powder was nanosized and the factor of agglomeration (Fagg) pointed the existence of agglomerates. In order to de-agglomerate nanopowder and to enhance BT properties the attrition milling was performed. The milled powder (BTA) possessed smaller particles and the size and number of agglomerates was significantly reduced. To investigate the effect of milling on improvement of ceramics electrical properties, both BT and BTA powders were uniaxially pressed and sintered at 1300 °C for 8 h in air. The temperature dependence of relative permittivity showed three structural phase transitions for ferroelectric barium titanate ceramics. The dielectric constant at Curie temperature was ~6700 for BTA which is much higher than 1340, obtained for non-treated BT. The dielectric losses were below 0.04 in both BT ceramics. At higher temperatures the analysis of impedance measurements showed the presence of both grain interior and grain boundary effects. Much higher grain and grain boundary resistivities were obtained for the BTA ceramics.  相似文献   

4.
In this work, perovskite relaxor ferroelectric lead zinc niobate–barium titanate (0.93PZN–0.07BT) ceramics were fabricated by using a combination of Zn3Nb2O8 B-site precursor and reactive sintering process. The effects of sintering condition on phase formation, densification, microstructure and dielectric properties of the final products have been investigated using a combination of X-ray diffraction, Archimedes density measurement, scanning electron microscopy and dielectric measurement techniques. It is seen that pure perovskite phase of PZN-BT solid solutions can be achieved in all samples. Density and average grain size values of sintered samples increased with sintering temperatures and dwell time. With appropriate sintering at 1150 °C for 5 h, 0.93PZN–0.07BT ceramics exhibited a peak dielectric constant of 11,497 and dielectric loss of 0.05 at the Curie temperature of 99 °C measured at 1 kHz.  相似文献   

5.
The effect of sintering temperature on microstructure, dielectric properties and energy storage properties of BaTiO3–(Sr1?1.5xBix)TiO3 (x = 0.09) (BT–SBT) ceramics was investigated. The sintering temperature has pronounced influence on the grain size, shrinkage, and dielectric properties of the BT–SBT ceramics. With increasing sintering temperature, the dielectric constant increases largely. However, the increasing tendency of the dielectric breakdown strength (BDS) is less noticeable but become more evident with the consideration of Weibull modulus. For the BT-SBT ceramics, the unreleased energy density decreases and the electric field stability of the energy storage efficiency enhances with the increase of sintering temperature.  相似文献   

6.
Porous anorthite ceramics with an ultra-low thermal conductivity of 0.018 W/m K have been fabricated by hydrous foam-gelcasting process and pressureless sintering method using γ-alumina, calcium carbonate and silica powders as raw materials. Microstructure and phase composition were analyzed by SEM and XRD respectively. Properties such as porosity, pore size distribution and thermal conductivity were measured. High porosity (69–91%) and low thermal conductivity (0.018–0.13 W/m K) were obtained after sintering samples with different catalyst additions at 1300–1450 °C. Porosity, pore size, pore structure and grain size had obvious effect on heat conduction, resulting in the low thermal conductivity. The experimental thermal conductivity data of porous anorthite ceramics were found to be fit well with the computed values derived from a universal model.  相似文献   

7.
γ-LiAlO2 ceramics with different grain sizes were prepared by controlling the sintering process and regulating the size and shape of the precursor powders. It was found that a size gradation of powders promoted the growth of γ-LiAlO2 grains. Ceramics with an average grain size of 10 μm were prepared from the size-graded powders. It was demonstrated that the shape of the precursor powders greatly affected the grain growth of the ceramics whereas the granulation of the powders restrained the abnormal grain growth. Furthermore nano-sized precursor powders obtained by a sol–gel route made it possible to prepare nano-structured γ-LiAlO2 ceramics.  相似文献   

8.
The influence of Two-Step Sintering (TSS) process on the final microstructure of oxide ceramic materials with three different crystal structures was studied. Two kinds of alumina (particle size 100 nm resp. 240 nm) as well as tetragonal zirconia (stabilized with 3 mol% Y2O3, particle size 60 nm) and cubic zirconia (8 mol% Y2O3, 140 nm) powders were cold isostatically pressed and pressurelessly sintered with different heating schedules. The microstructures achieved with TSS method were compared with microstructures achieved with conventional Single-Step Sintering (SSS) schedule. The results showed that the efficiency of the TSS of these oxide ceramics was more dependent on their crystal structure than on their particle size and green body microstructure. The method of TSS brought only negligible improvement of the microstructure of tetragonal zirconia and hexagonal alumina ceramics. On the other hand, TSS was successful in the sintering of cubic zirconia ceramics; it led to a decrease in grain size by a factor of 2.  相似文献   

9.
《Ceramics International》2016,42(3):4221-4227
Spark plasma sintering (SPS) is a powerful technique to produce fine grain dense ferrite at low temperature. This work was undertaken to study the effect of sintering temperature on the densification, microstructures and magnetic properties of magnesium ferrite (MgFe2O4). MgFe2O4 nanoparticles were synthesized via sol–gel self-combustion method. The powders were pressed into pellets which were sintered by spark plasma sintering at 700–900 °C for 5 min under 40 MPa. A densification of 95% of the theoretical density of Mg ferrite was achieved in the spark plasma sintered (SPSed) ceramics. The density, grain size and saturation magnetization of SPSed ceramics were found to increase with an increase in sintering temperature. Infrared (IR) spectra exhibit two important vibration bands of tetrahedral and octahedral metal-oxygen sites. The investigations of microstructures and magnetic properties reveal that the unique sintering mechanism in the SPS process is responsible for the enhancement of magnetic properties of SPSed compacts.  相似文献   

10.
The effect of LiBiO2 (LBO) additive on the sintering of Pb0.97La0.03(Zr0.53Ti0.47)0.9925O3 (PLZT) ceramics was carefully investigated. 6.0 wt% LBO added PLZT powders could be fully densified to 98% relative density at a temperature as low as 950 °C. It is worthy to notice that there are distinct enhancements in piezoelectric and electrostrictive properties by increasing the soaking time from 2 h to 7 h, which could mainly originate from the improvement of crystallinity and grain size of PLZT ceramics. By controlling the soaking time and concentration of LBO addition, PLZT ceramics sintered at 950 °C could exhibit high curie temperature of 240 °C and very high S11 of 0.22% under 3.0 kV/mm, which is even better than that of traditionally sintered PZT-5, PMN–PZT, and this is very promising for actuators designed in multilayer structure in high temperature environment.  相似文献   

11.
《Ceramics International》2016,42(7):8290-8295
Aluminum oxynitride (AlON) powders were synthesized by the carbothermal reduction and nitridation process using commercial γ-Al2O3 and carbon black powders as starting materials. And AlON transparent ceramics were fabricated by pressureless sintering under nitrogen atmosphere. The effects of ball milling time on morphology and particle size distribution of the AlON powders, as well as the microstructure and optical property of AlON transparent ceramics were investigated. It is found that single-phase AlON powder was obtained by calcining the γ-Al2O3/C mixture at 1550 °C for 1 h and a following heat treatment at 1750 °C for 2 h. The AlON powder ball milled for 24 h showed smaller particles and narrower particle size distribution compared with the 12 h one, which was benefit for the improvement of optical property of AlON transparent ceramics. With the sintering aids of 0.25 wt% MgO and 0.04 wt% Y2O3, highly transparent AlON ceramics with in-line transmittance above 80% from visible to infrared range were obtained through pressureless sintering at 1850 °C for 6 h.  相似文献   

12.
Transparent MgO ceramics were fabricated by spark plasma sintering (SPS) of the commercial MgO powder using LiF as the sintering additive. Effects of the additive amount and the SPS conditions (i.e., sintering temperature and heating rate) on the optical transparency and microstructure of the obtained MgO ceramics were investigated. The results showed that LiF facilitated rapid densification and grain growth. Thus, the MgO ceramics could be easily densified at a moderate temperature and under a low pressure. In addition, the transparency and microstructure of the MgO ceramics were found to be strongly dependent on the temperature and heating rate. For the MgO ceramics sintered at 900 °C for 5 min with the heating rate of 100 °C/min and the pressure of 30 MPa from the powders with 1 wt% LiF, the average in-line transmittance reached 85% in the range of 3  5 μm, and the average grain size is ∼0.7 μm.  相似文献   

13.
A unique combination of high-energy ball-milling, annealing, and spark-plasma sintering has been used to process superhard B4C ceramics with ultrafine-grained, dense microstructures from commercially available powders, without sintering additives. It was found that the ultrafine powder prepared by high-energy ball-milling is hardly at all sinterable, but that B2O3 removal by gentle annealing in Ar provides the desired sinterability. A parametric study was also conducted to elucidate the role of the temperature (1600–1800 °C), time (1–9 min), and heating ramp (100 or 200 °C/min) in the densification and grain growth, and thus to identify optimal spark-plasma sintering conditions (i.e., 1700 °C for 3 min with 100 °C/min) to densify completely (>98.5%) the B4C ceramics with retention of ultrafine grains (∼370 nm). Super-high hardness of ∼38 GPa without relevant loss of toughness (∼3 MPa m1/2) was thus achieved, attributable to the smaller grain size and to the transgranular fracture mode of the B4C ceramics.  相似文献   

14.
In the present study, zinc sulfide (ZnS) and calcium lanthanum sulfide (CaLa2S4, CLS) composite ceramics were consolidated via field-assisted sintering of 0.5ZnS-0.5CLS (volume ratio) composite powders at 800–1050 °C. Through sintering curve analyses and microstructural observations, it was determined that between 800 and 1000 °C, grain boundary diffusion was the main mechanism controlling grain growth for both the ZnS and CLS phases within the composite ceramics. The consolidated composite ceramics were determined to be composed of sphalerite ZnS, wurtzite ZnS and thorium phosphate CLS. The sphalerite-wurtzite phase transition of ZnS was further demonstrated to be accompanied by the formation of stacking faults and twins in the ceramics. It was also found that the addition of the CLS phase improved the indentation hardness of the ceramics relative to pure ZnS by homogeneous dispersion of ZnS and CLS small grains.  相似文献   

15.
TiO2 bulk ceramics were fabricated by using both spark plasma sintering (SPS) and the conventional sintering method (CSM). Starting materials were ultra fine rutile powders (<50 nm) prepared via the sol–gel process. CSM achieved the relative sintering density of 99.2% at 1300 °C. The grain size of 1300 °C sintered specimen was 6.5 μm. However, the sintering temperature of SPS for the density of 99.1% was as low as 760 °C, where the grain size was only 300 nm. In order to re-oxidize the Ti3+ ions due to the reducing atmosphere of the SPS process and the high temperature of the CSM process, the prepared TiO2 specimens were annealed in an oxygen atmosphere. The dielectric constant (ɛr) and quality factor (Q × f) of SPS-TiO2 re-oxidized specimens in a microwave regime were 112.6 and 26,000, respectively. These properties were comparable to those of 1300 °C sintered CSM specimens (ɛr  101.3, Q × f  41,600). These microwave dielectric properties of nanocrystalline TiO2 specimens prepared using SPS were discussed in terms of grain size variation and Ti4+ reduction.  相似文献   

16.
In this communication, the cold sintering process was applied to benefit the green body compaction of 8 mol%Y2O3-stablized ZrO2 ceramics (8Y-YSZ). Compared to conventionally processed ceramics, an enhanced densification behavior was demonstrated in cold sintering related ones following a second step conventional sintering process. Dense ceramics up to ∼96% of theoretical density were achieved after sintering at 1200 °C. The resulted ceramics demonstrated a fine microstructure with a grain size ∼200 nm. A mechanical performance with a Vickers hardness of 13.6 GPa and a fracture toughness of 2.85 MPa m1/2 was also reported.  相似文献   

17.
This paper reports the preparation of nanometric powders of 3.5 mol% Y2O3-doped ZrO2, with controlled microstructure, by the spray pyrolysis process, assisted by ultrasonic atomizer, at relatively low temperature. As-prepared powders were found crystalline and consisted of dense and chemically homogeneous spherical particles. Conventional sintering at 1500 °C for 2 h in air yields dense ceramics of 83 nm of average grain size. The electrical properties of electrode/electrolyte interface were determined by impedance spectroscopy measurements before, during and after thermal ageing for 2000 h at 700 °C in dry air. The effect of thermal ageing on the electrical responses of the ceramic and interfaces with platinum electrodes was investigated.  相似文献   

18.
A series of La-doped (10 at.%) SrTiO3 ceramics with grain size ranging from 6 μm to 24 nm was prepared from nanocrystalline powders using high-pressure field assisted sintering (HP-FAST). A progressive reduction of thermal conductivity κ with decreasing grain size was observed. At room temperature, κ of the ceramic with grain size of 24 nm (1.2 W m−1 K−1) is one order of magnitude lower than that of undoped single crystals. The strong suppression of κ can be ascribed to (i) the high concentration of lattice defects, (ii) the increasing contribution of grain boundaries to phonon scattering when the grain size is decreased to the nanoscale and (iii) a moderate amount (10–15 vol.%) of nanopores. These results demonstrate that nanostructuration can be a successful strategy to attain a considerable reduction of κ in heavily doped bulk oxide ceramics. The low electrical conductivity of the La:SrTiO3 nanoceramics represents a major obstacle for thermoelectric applications.  相似文献   

19.
Barium titanate stannate (BTS) functionally graded materials (FGMs) with different tin/titanium concentration gradient were prepared by the powder-stacking method and uniaxially pressing process, followed by sintering. Impedance spectroscopy (IS) was used to determine the electrical characteristics of FGMs and ingredient BTS ceramics, as well as to distinguish the grain-interior and grain boundary resistivity of the ceramics. Activation energies of FGMs and ingredients were calculated. It has been established that for BTS ceramics the activation energy deduced from grain-interior conductivity (0.73–0.75 eV) is defined by chemical composition, while activation energy for grain boundary conductivity (1.07–1.25 eV) is influenced by microstructural development (density and average grain size). Furthermore, for FGMs, activation energy for grain-interior conductivity kept the intrinsic properties (0.74–0.78 eV) and did not depend on tin/titanium concentration gradient, while activation energy (1.03–1.29 eV) for grain boundary was determined by the microstructural gradient. No point dissipation was observed by IS, accordingly, no insulator interfaces (cracks and/or delamination) between graded layers were detected.  相似文献   

20.
Eu2O3 ceramics have been obtained at sintering temperatures of between 1000 °C and 1550 °C. X-ray diffraction and scanning electron microscopy, in combination with dilatometry experiments, allowed understanding the sintering behaviour. Moderate grain growth followed an efficient densification process between 1400 °C and 1550 °C, which yielded high-density ceramics with an average grain size of 4 μm. The ceramics had Young modulus of 125 GPa, in agreement with the previously published data. The dense Eu2O3 ceramics were translucent (35.1% transmittance at 800 nm of 0.8 mm thick discs), showing in addition a slightly pink colour. We propose that the combination of high density and an average grain size of 4 μm is responsible for this novel functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号