首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 84 毫秒
1.
邓天民  方芳  周臻浩 《计算机应用》2005,40(10):2872-2880
针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图像质量;其次,基于卷积神经网络(CNN),融合空间金字塔结构和批量归一化(BN)方法构建改进空间金字塔池化卷积神经网络(SPPN-CNN)模型,并利用Softmax分类器实现交通标志分类;最后,选用德国交通标志识别数据集(GTSRB),对比不同图像预处理方法、模型参数和模型结构的训练效果,并验证和测试所提模型。实验结果表明,SPPN-CNN模型的识别精度达到98.04%,损失小于0.1,在低配GPU条件下识别速率大于3 000 frame/s,验证了模型精度高、泛化性强、实时性好的特点。  相似文献   

2.
邓天民  方芳  周臻浩 《计算机应用》2020,40(10):2872-2880
针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图像质量;其次,基于卷积神经网络(CNN),融合空间金字塔结构和批量归一化(BN)方法构建改进空间金字塔池化卷积神经网络(SPPN-CNN)模型,并利用Softmax分类器实现交通标志分类;最后,选用德国交通标志识别数据集(GTSRB),对比不同图像预处理方法、模型参数和模型结构的训练效果,并验证和测试所提模型。实验结果表明,SPPN-CNN模型的识别精度达到98.04%,损失小于0.1,在低配GPU条件下识别速率大于3 000 frame/s,验证了模型精度高、泛化性强、实时性好的特点。  相似文献   

3.
苏志明  王烈  蓝峥杰 《计算机工程》2021,47(12):299-307,315
人脸表情细微的类间差异和显著的类内变化增加了人脸表情识别难度。构建一个基于多尺度双线性池化神经网络的识别模型。设计3种不同尺度网络提取人脸表情全局特征,并引入分层双线性池化层,集成多个同一网络及不同网络的多尺度跨层双线性特征以捕获不同层级间的部分特征关系,从而增强模型对面部表情细微特征的表征及判别能力。同时,使用逐层反卷积融合多层特征信息,解决神经网络通过多层卷积层、池化层提取特征时丢失部分关键特征的问题。实验结果表明,该模型在FER2013和CK+公开数据集上的识别率分别为73.725%、98.28%,优于SLPM、CL、JNS等人脸表情识别模型。  相似文献   

4.
5.
6.
行人重识别是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。受行人姿态、遮挡、光照变化等因素的影响,传统的行人重识别方法中特征的表达能力有限,导致准确率降低,提出一种融合不同尺度对比池化特征的行人重识别方法。利用残差网络ResNet50提取行人图像的多尺度特征,在网络的不同层次上,通过对输入的特征进行全局平均池化和最大平均池化,将每组平均池化特征和最大池化特征相减,对相减得到的差异特征与最大池化特征进行相加,获得具有强判别性的对比池化特征。在此基础上,利用三元组损失和交叉熵损失联合优化模型,提高模型的泛化能力,同时采用重排序技术优化网络性能。实验结果表明,该方法在Market1501和DukeMTMC-reID数据集上的首位命中率分别达到96.41%和91.43%,平均精度均值为94.52%和89.30%,相比SVDNet、GLAD和PCB等方法,其行人重识别的准确率较高。  相似文献   

7.
当前利用深度学习方法进行扬尘图像识别的研究较少,一些传统的方法使得扬尘图像的识别率较低.针对这种情况,提出一种基于改进残差网络的扬尘识别方法.该方法将ResNet-50网络应用到扬尘数据集中,并对其网络结构进行了改进.加入空间金字塔池化以解决输入图像尺寸不固定的问题,并且将金字塔池的策略改为平均池化,将扩大特征图的方法应用到主干网络中,有利于提取到更加细粒度的特征,提升模型的性能,从而提高识别率.实验结果表明,该方法具有很高的精确度,为扬尘识别提供了一种有效的方案.  相似文献   

8.
交通标志识别是智能驾驶的关键技术,要满足识别准确率高和识别速度快的要求。为了提升交通标志的识别准确率和识别速度,提出基于卷积神经网络的交通标志识别算法,设计了一种准确率高、速度快的识别模型用于交通标志识别。该模型使用了改进的Inception模块以及多尺度特征融合方式增强网络的特征提取能力,采用批量归一化来加速网络的训练,采用全局平均池化减小模型的参数量。在GTSRB数据集上进行训练测试,识别模型的准确率达到99.6%,识别每张图片的时间为0.22ms,实验结果表明识别模型的识别准确率高,识别速度快。通过自对比实验,验证了识别模型的结构优势。与其他交通标志识别方法在GTSRB数据集上进行对比实验,识别模型的识别性能优于其他识别方法。  相似文献   

9.
基于多纵卷积神经网络的交通标志识别算法识别率较高,但识别和训练时间较长,实用性较差。为此,构造一种基于多尺度卷积神经网络的道路交通标志识别模型。通过改进单尺度卷积神经网络中特征提取的基网络,将网络不同层级所产生的特征融合为多尺度特征并提供给分类器,以提高低层特征的利用率。在GTSRB数据集上的实验结果表明,该模型准确识别率达到99.25%,与多纵卷积神经网络模型相比,其在保证高精度的同时,识别和训练时间的降幅均超过90%,更适用于真实路况下交通标志的精准检测。  相似文献   

10.
为了解决交通标志识别易受光照、遮挡和小目标影响的问题,对YOLOv5-P6算法进行改进,提出了一种新的交通标志识别算法。算法采用加权双向特征金字塔网络,提高特征提取能力,增加了跨层连接并对传递的特征进行权重调整,更好地融合道路交通标志的通道特征;使用空洞空间池化金字塔模块提取多尺度上下文信息,进一步增大感受野从而改善语义分割的效果;引入改进的跨阶段局部网络,使模块更加简洁;在训练过程中加入随机裁剪技术,并采用图像缩放、图像切变以及代数运算对检测效果不理想的类别进行实例扩充,缓解模型的过拟合问题。在TT100K数据集上应用本算法,识别精度达到90.02%,与传统的YOLOv5模型相比提高了4.72%,帧处理速率达到36.07FPS。  相似文献   

11.
针对传统池化方式不能提取有效特征值的问题,提出根据池化域的尺寸、池化域内的元素值和网络的训练轮数调整池化结果的自适应池化方法,该算法依据插值原理与最大值池化模型构建函数,以特定函数值作为池化结果,然后利用交叉验证进行模型对比实验。同时提出了小样本调优法以解决目前依靠经验值在全部数据集上验证选取超参数效率较低的问题。在原始数据集上,按照分层抽样的规则抽取小样本,并基于小样本数据集对已编码的超参数组合循环训练并测试,通过对识别率最高的组合解码确定最优超参数。选用DeepFashion数据库进行相关实验,结果显示自适应池化模型的识别率达到83%左右,与最大值池化模型相比提高约2.5%。通过小样本选定超参数,并与随机组合超参数在原始数据集上进行对比实验,结果显示小样本调优法选择的超参数在经验值范围内最优,识别结果为86.98%,与随机组合超参数的平均识别率相比提高了约41.4%。自适应池化方法可以扩展到其他的神经网络中,小样本调优法对高效选取神经网络的超参数提供了依据。  相似文献   

12.
针对交通标志识别模型检测速度与识别精度不均衡,以及受遮挡目标和小目标难以检测的问题,对YOLOv5模型进行改进,提出一种基于坐标注意力(CA)的轻量级交通标志识别模型。首先,通过在主干网络中融入CA机制,有效地捕获位置信息和通道之间的关系,从而更准确地获取感兴趣区域,避免过多的计算开销;然后,通过在特征融合网络中加入跨层连接,在不增加成本的情况下融合更多的特征信息,提高网络的特征提取能力,并改善对遮挡目标的检测效果;最后,引入改进的CIoU函数计算定位损失,以缓解检测过程中样本尺寸分布不均衡的现象,并进一步提高对小目标的识别精度。在TT100K数据集上应用所提模型时,识别精度达到了91.5%,召回率达到了86.64%,与传统的YOLOv5n模型相比分别提高了20.96%和11.62%,且帧处理速率达到了140.84 FPS。实验结果比较充分地验证了所提模型在真实场景中对交通标志检测与识别的准确性与实时性。  相似文献   

13.
杨春妮  冯朝胜 《计算机应用》2018,38(7):1839-1845
短文本的多意图识别是口语理解(SLU)中的难题,因短文本的特征稀疏、字数少但包含信息量大,在分类问题中难以提取其有效特征。为解决该问题,将句法特征和卷积神经网络(CNN)进行结合,提出一种多意图识别模型。首先,将句子进行依存句法分析以确定是否包含多意图;然后,利用词频-逆文档频率(TF-IDF)和训练好的词向量计算距离矩阵,以确定意图的个数;其次,把该距离矩阵作为CNN模型的输入,进行意图分类;最后,判断每个意图的情感极性,计算用户的真实意图。采用现有的智能客服系统的真实数据进行实验,实验结果表明,结合句法特征的CNN模型在10个意图上的单分类精准率达到93.5%,比未结合句法特征的CNN模型高1.4个百分点;而在多意图识别上,精准率比其他模型提高约30个百分点。  相似文献   

14.
针对视频人体动作识别中动作信息利用率不高、时间信息关注度不足等问题,提出了一种基于紧耦合时空双流卷积神经网络的人体动作识别模型。首先,采用两个2D卷积神经网络分别提取视频中的空间特征和时间特征;然后,利用长短期记忆(LSTM)网络中的遗忘门模块在各采样片段之间建立特征层次的紧耦合连接以实现信息流的传递;接着,利用双向长短期记忆(Bi-LSTM)网络评估各采样片段的重要性并为其分配自适应权重;最后,结合时空双流特征以完成人体动作识别。在数据集UCF101和HMDB51上进行实验验证,该模型在这两个数据集上的准确率分别为94.2%和70.1%。实验结果表明,所提出的紧耦合时空双流卷积网络模型能够有效提高时间信息利用率和动作整体表达能力,由此明显提升人体动作识别的准确度。  相似文献   

15.
朱槐雨  李博 《计算机应用》2021,41(11):3234-3241
无人机(UAV)航拍图像视野开阔,图像中的目标较小且边缘模糊,而现有单阶段多框检测器(SSD)目标检测模型难以准确地检测航拍图像中的小目标。为了有效地解决原有模型容易漏检的问题,借鉴特征金字塔网络(FPN)提出了一种基于连续上采样的SSD模型。改进SSD模型将输入图像尺寸调整为320×320,新增Conv3_3特征层,将高层特征进行上采样,并利用特征金字塔结构对VGG16网络前5层特征进行融合,从而增强各个特征层的语义表达能力,同时重新设计先验框的尺寸。在公开航拍数据集UCAS-AOD上训练并验证,实验结果表明,所提改进SSD模型的各类平均精度均值(mAP)达到了94.78%,与现有SSD模型相比,其准确率提升了17.62%,其中飞机类别提升了4.66%,汽车类别提升了34.78%。  相似文献   

16.
针对视频人体动作识别中动作信息利用率不高、时间信息关注度不足等问题,提出了一种基于紧耦合时空双流卷积神经网络的人体动作识别模型。首先,采用两个2D卷积神经网络分别提取视频中的空间特征和时间特征;然后,利用长短期记忆(LSTM)网络中的遗忘门模块在各采样片段之间建立特征层次的紧耦合连接以实现信息流的传递;接着,利用双向长短期记忆(Bi-LSTM)网络评估各采样片段的重要性并为其分配自适应权重;最后,结合时空双流特征以完成人体动作识别。在数据集UCF101和HMDB51上进行实验验证,该模型在这两个数据集上的准确率分别为94.2%和70.1%。实验结果表明,所提出的紧耦合时空双流卷积网络模型能够有效提高时间信息利用率和动作整体表达能力,由此明显提升人体动作识别的准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号