首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
基于混料试验中单纯形质心法建立了CaO-SiO2-Al2O3-MgO-2%TiO2渣黏度和熔化性能预测模型,利用预测模型、FactSage和X射线衍射(XRD)研究了不同w(Al2O3)含钛炉渣的冶金性能,并探讨了高Al2O3炉渣中w(MgO)/w(Al2O3)对黏度和熔化性能的影响。结果表明,炉渣黏度和熔化性能预测模型具有较高的精度,误差分别小于5%和2%。随着Al2O3质量分数由10%增加至18%,黏度(η)、熔化性温度(tM)和液相线温度(tL)均升高;低熔点相黄长石(Melilite)开始析出温度和析出量逐渐增大,高熔点相钙钛矿(CaTiO3)和低熔点相硅灰石(CaSiO3)开始析出温度先增大后减小,还析出了少量高熔点相尖晶石。当A...  相似文献   

2.
为降低钢中有害杂质硫元素含量,KR脱硫法广泛应用于钢铁企业生产低硫钢,脱硫剂对脱硫效果影响尤为关键。基于单纯形格子法,综合FactSage 8.1热力学软件、半球点熔点仪、旋转黏度计、渣-金接触试验等,分析了CaO-Al2O3-SiO2-CaF2-MgO渣系组分对脱硫剂的液相线温度、硫容量、脱硫剂消耗量、熔化温度、黏度、脱硫率的影响规律。结果表明,脱硫剂液相线温度随CaO含量增加而增加,随CaF2含量增加而降低;脱硫剂硫容量随CaO含量增加而增加,随Al2O3和CaF2含量增加而降低;增加CaF2和Al2O3含量,当脱硫剂中SiO2含量低时,脱硫剂消耗量及熔化温度变化不大,而当SiO2含量高时,脱硫剂消耗量大幅增加,熔化温度明显降低;熔化温度为1 400~1 424℃、w(SiO2)...  相似文献   

3.
为明确转炉吹炼不同阶段炉渣黏流特性变化机理,结合不同时期典型的转炉炉渣成分,利用FactSage热力学模拟软件研究了碱度、FeO、MgO、MnO和Al2O3的变化对CaO-SiO2-FeO-MgO-MnO-Al2O3系转炉渣黏度的影响,并结合生产实际给出了转炉冶炼不同阶段适宜的炉渣碱度、炉渣中合理的FeO、MgO、MnO及Al2O3含量。研究结果表明,不同碱度条件下转炉渣黏度随温度升高而逐渐减小,不同温度条件下转炉渣黏度随碱度增大呈现先增大后减小的趋势。炉渣黏度受FeO、MgO和Al2O3含量变化影响较大,受MnO含量变化影响相对较小。炉渣流动性主要与炉渣结构的聚合度和渣中固相质量分数有关,FeO、MgO和Al2O3含量增加可以破坏渣中硅酸盐聚合体的网络结构,多余MgO易导致渣中高熔点固相析出;Al2O3...  相似文献   

4.
采用热力学软件FactSage中的Equilib和Phase Diagram模块分别对Al2O3-CaO-MgO三元渣系的熔化性能及添加助熔剂后对渣系熔点的影响进行理论分析,并实验测定渣系的实际熔点.发现渣系熔点随w(Al2O3)/w(CaO)比的升高先降低后升高,w(MgO)为4%~5%时渣系熔点最低.对于w(Al2O3)/w(MgO)>3的渣系,w(CaO)<30%时渣系熔点随w(CaO)增加而降低.22O3)/w(CaO)<2.5,w(MgO)为15%~18%时,钒铁渣中加2.29%AlCl3、4.86% Fe2O3或4.77% Na2O时均可降低原渣熔化性温度约100℃.   相似文献   

5.
利用Roscoe方程,结合FactSage的多元多相平衡计算和纯液相渣黏度计算功能可对含固相熔渣的黏度进行计算.本研究针对基于铜冶炼渣的FeO-SiO2-Fe3O4-CaO-Al2O3-MgO系,首先根据相似炉渣的黏度测定值对Roscoe方程中的参数进行拟合,同时验证了该方法在计算所研究体系时的准确性.基于所得的计算模型考察不同组分含量对平衡相组成及黏度的影响规律,并总结获得合理的渣型配比.当炉渣中各组分的质量分数分别控制在FeO 40%~60%、SiO2 25%~40%、Fe3O4 0%~15%、CaO 0%~10%、Al2O3 0%~8%和MgO 0%~4%时,可在冶炼过程中得到流动性较好、固体量较少的熔渣.   相似文献   

6.
针对某石油套管钢管壁内缺陷,采用扫描电镜-能谱仪(SEM-EDS)分析,并结合FactSage8.0软件计算进行研究,结果表明缺陷纵向面主要由浅条纹及深条纹组成,浅条纹处存在大量MgO·Al2O3夹杂物,深条纹处有大量的Al2O3、MgO·Al2O3、CaO·Al2O3·SiO2等夹杂物聚集在一起.缺陷横截面上的夹杂物主要为Ca O·Al2O3·SiO2、CaO·Al2O3·MgO和CaO·Al2O3·MgO·SiO23类.推测钢管壁内缺陷形成机理主要为:(1)大包钢水在浇注末期钢水卷带钢包渣进入中间包钢水中,该渣滴随后吸附钢中高Al2O3含量的微细x Al2O3<...  相似文献   

7.
通过热力学计算和扫描电镜研究了铁水预处理-150 t BOF-钢包吹氩-LF-CSP流程LF精炼后喂硅钙线和钙铝线处理的Q235,SPA-H和DC01钢中夹杂物演变及精炼渣对其影响。结果表明,Ca处理前的精炼过程中,钢中Al2O3大部分已经被精炼渣(/%:52.97~55.63CaO,4.11~12.78SiO2,5.11~9.87MgO,22.93~31.72Al2O3,0.58~1.27FeO,0.01~0.07MnO)改性为MgO·Al2O3,根据Mg-Al-O生成优势区图,钢中有微量Mg就能使Al2O3变性为MgO·Al2O3尖晶石,钙处理主要是对MgO·Al2O3尖晶石的变性,因此需要保证充足的钙线喂入量,才能将高熔点铝镁和铝镁钙复合夹杂物变性到低熔点区域;为了避免生成高熔点CaS夹杂物,钙处理前[Al]=0.02%~0.04%时,[S]要小于0.001 4%。   相似文献   

8.
彭展  马慧侠  刘静  白万里 《冶金分析》2019,39(10):67-72
镁砂标样易吸潮变质,为了探讨变质镁砂标样继续使用的可能性,对9种烧失量已经发生变化的镁砂标准样品进行了条件试验,对变质镁砂标样的推荐值进行了校正。将样品进行高温灼烧处理,再通过定性半定量程序确定其未知元素的种类和含量,采用熔融制样法,建立了基于变质镁砂标样的高硅质镁基耐火材料中MgO、SiO2、CaO、Al2O3、Fe2O3、K2O、MnO、P2O5的X射线荧光光谱(XRF)分析方法。实验方法用于测定1个变质镁砂标样镁砂425中MgO、SiO2、CaO、Al2O3、Fe2O3、MnO、P2O5,其中K2O测定结果的相对标准偏差(RSD,n=11)为11%,其他组分的RSD(n=11)均在3%以下;按照实验方法测定2个变质镁砂标样和2个人工合成样品中MgO、SiO2、CaO、Al2O3、Fe2O3、MnO、P2O5,测定值与认定值/理论值相符,允许差满足国家标准分析方法的分析要求,使变质镁砂标准样品能够回收再利用。  相似文献   

9.
 为研究MgO含量及碱度对球团矿及烧结矿液相生成特性的影响,以FeOx-SiO2-CaO-MgO-Al2O3五元体系为研究基础,通过固定SiO2和Al2O3质量分数,以碱度及MgO质量分数为变量,采用FactSage模拟与熔点熔速试验数据相结合的方法,探究了MgO质量分数及碱度变化对FeOx-SiO2-CaO-MgO-Al2O3体系液相生成特性的影响,并以此确定此五元体系最佳MgO质量分数及碱度范围,为企业生产实践提供理论支撑。结果表明,当体系w(MgO) 变化范围为1.5%~3.0%时,体系高熔点化合物的生成量随着MgO质量分数的提高而增加,抑制了液相生成,体系的液相区会随着MgO质量分数的增加而逐渐缩小;当碱度为2.0和1.8时,体系的熔融速率较为稳定,便于控制。  相似文献   

10.
 为了掌握高Al2O3条件下(w(Al2O3)为15%以上)高炉渣系的熔化特性,利用差式扫描量热仪分析了不同w(MgO)/w(Al2O3)、碱度(R)以及w(Al2O3)对高铝高炉渣的熔化温度及熔化热的影响。试验结果表明,炉渣熔化开始温度为1 248~1 291 ℃、熔化结束温度为1 432~1 485 ℃、熔化热为137~211 J/g;当w(Al2O3)=15%、高w(MgO)/w(Al2O3)时,发生了共晶逆反应,导致高炉炉渣熔化开始温度逐渐降低,但由于高炉炉渣的液相线温度基本未变,所以炉渣熔化结束温度基本未发生改变;w(Al2O3)为20%时,随着w(MgO)/w(Al2O3)的增加,炉渣中易生成熔点较高的镁铝尖晶石,导致高炉炉渣熔化开始温度逐渐增大,与此同时,炉渣液相线温度逐渐降低,导致炉渣熔化结束温度逐渐降低;随着碱度R的增加,高炉炉渣中生成了具有高熔点的化合物、炉渣的液相线温度升高,使得高炉炉渣的熔化开始温度逐渐增加、炉渣熔化结束温度逐渐升高;随着w(Al2O3)的增加,发生了共晶逆反应,故炉渣的熔化开始温度逐渐降低,而随着w(Al2O3)的增加,炉渣中键能较大的Al—O键增多,需要在更高温度下才能实现炉渣的最终熔化,即熔化结束温度逐渐增加;随着w(MgO)/w(Al2O3)、R以及w(Al2O3)的增加,炉渣熔化热逐渐增多。分析认为,随着R的增加,炉渣中有高熔点化合物的生成,熔化热增加;随着炉渣中w(Al2O3)的增加,炉渣中Al—O键增多,解聚破坏熔渣结构消耗的热量增多;而随着w(MgO)/w(Al2O3)增加,高熔点化合物的生成或熔化开始温度降低,造成熔化热增加。  相似文献   

11.
高炉熔渣直接纤维化过程中,晶相析出会使熔渣的黏度增加、流动性降低,从而影响矿渣棉纤维质量.熔渣的化学组成会对其析晶行为产生重要影响.采用FactSage热力学模拟结合X射线衍射分析(XRD)、场发射电子显微镜分析(FESEM)、能谱分析(EDS)和热丝法(HTT)等研究方法,探析了 Al2O3质量分数(11%~19%)...  相似文献   

12.
王亮  程树森  刘朋波  陈艳波 《钢铁》2022,57(1):48-56
 随着高品位铁矿石消耗的加快,资源逐渐趋于贫化,钢铁企业可利用的铁矿石原料逐渐向中低品位原料转变,尤其是高铝铁矿,这类原料的使用无疑会增加高炉渣中Al2O3质量分数,影响高炉现有的操作制度。Al2O3质量分数为15%~17%的高炉渣,由于Al2O3含量高而使高炉渣的冶金性能变差,为了保证高炉渣的冶金性能,必须在其中添加8%左右的MgO。然而,Al2O3含量相似的浦项钢铁的高炉渣,其MgO质量分数仅为4%左右,高炉实现了高效、稳定、顺行。因此,从高炉CaO-SiO2-Al2O3-MgO四元渣系的物理化学机理出发,研究了K2O、Na2O对高炉渣四元渣系CaO-SiO2-Al2O3-MgO中各组元活度的影响;研究了“渣-气”平衡条件下渣中碱金属氧化物和气体中碱金属的关系;计算了K2O、Na2O和MgO对黏度的影响。结果显示,在考虑高炉渣CaO-SiO2-Al2O3-MgO中各组元活度、碱金属在渣-气间的分布和炉渣黏度的情况下,当碱金属氧化物K2O和Na2O存在时,可以适当减小MgO含量,并可以保证高炉渣各组元活度及炉渣黏度基本不变。这不仅有助于减少高炉原料中添加含镁熔剂、提高原料品位、高效排碱、降低碱危害、减少碳排放、延长高炉寿命及降低成本,还能促进钢铁企业实现节能减排的目标。  相似文献   

13.
Q235钢中夹杂物演变规律和生成机理分析   总被引:1,自引:0,他引:1  
 为了更好地控制Q235钢中非金属夹杂物的种类和数量,提高钢的冲击韧性,采用自动扫描电镜分析了Q235钢中非金属夹杂物在LF精炼、中间包和连铸坯中成分和形貌的演变规律。采用FactSage热力学软件对钢中各类夹杂物的生成机理进行了分析。研究发现,钢中非金属夹杂物的演变规律为均相的SiO2-MnO夹杂物→均相的SiO2-Al2O3-MnO-TiOx夹杂物→双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物→多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。样品冷却过程中均相的SiO2-MnO夹杂物发生相变析出纯SiO2导致在LF精炼初期钢中出现双相SiO2-MnO类夹杂物。加入的硅钙钡合金中铝含量较高,导致液态夹杂物在钢液中析出MgO·Al2O3,以及在LF出站钢样品中出现双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物。含钛的夹杂物在连铸坯凝固冷却过程会析出纯的Ti3O5,并且钢中还会析出MnS析出相,因此连铸坯中存在多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。  相似文献   

14.
郭江  李荣 《中国冶金》2020,30(12):18-21
为了明确B2O3对高Al2O3渣稳定性的影响,基于现场高炉渣的实际成分,通过熔体物性测定仪、扫描电镜、红外光谱仪分析了B2O3对高Al2O3渣黏度和基础玻璃微观结构的影响。结果表明,随着B2O3含量的增加,炉渣黏度降低;当炉渣温度低于1 360 ℃时,炉渣随着B2O3的增加稳定性增强;炉渣温度为1 216 ℃、B2O3质量分数为2.0%时,炉渣的稳定性最好。随着B2O3含量的增加,炉渣不断玻璃化,当B2O3质量分数为2.0%时,炉渣微观结构完全是玻璃态结构,表现为假性酸性渣的性质;随着B2O3含量的增加,[Si-O-Al]键断裂,[AlO6]八面体结构振动峰增加,炉渣的稳定性越来越好。  相似文献   

15.
采用喷吹CO2法对低钛高炉渣进行脱硫处理,低钛高炉渣中硫的脱除率为66.59%~78.01%,渣中残硫含量为0.137%~0.283%,所制备的低硫低钛高炉渣中硫含量基本满足HRB400E钢LF精炼渣要求。低硫低钛高炉渣LF精炼终渣成分为/%:37.40~46.50CaO,12.30~15.10MgO,21.70~26.70SiO2,5.74~17.00Al2O3,2.44~3.39TiO2,0.36~1.42MnO,0.75~1.62Fe2O3,0.200~0.597S,钢水脱硫率为10.0%~41.5%,HRB400E钢终点[S]为0.008%~0.029%,与现工艺精炼渣(折渣和钢包渣终渣成分/%:34.30~42.90CaO,13.60~18.10MgO,24.00~26.50SiO2,4.88~11.00Al2O3,0.71~1.12TiO2,0.47~1.47MnO,0.81~1.72Fe2O3,0.245~1.132S)的脱硫效果相当(HRB400E钢终点[S]0.027%~0.032%)。  相似文献   

16.
以Al2O3质量分数为30%的高铝渣为原料,研究了该渣系下的液相比例、黏度、表面张力和密度在不同n(CaO)/n(Al2O3) (C/A=1.4、1.5、1.6)、MgO质量分数(0%、5%、10%)下与温度变化(1 550、1 600、1 650 ℃)的关系,并分析了不同n(CaO)/n(Al2O3)下高铝渣特性对发泡行为的影响及与发泡指数之间的关系。结果表明,不同n(CaO)/n(Al2O3)下,MgO质量分数不同,则熔渣成为全液相时的温度均有所差异;渣的黏度和表面张力随温度的升高而减小,并且温度越高,黏度减小的幅度越小,表面张力减小的幅度越大,而渣的密度随温度升高而增加,但幅度较小,因此温度对密度的影响较小。在温度为1 650 ℃、MgO的质量分数分别为0%和5%的渣系中,改变w(CaO)/w(SiO2)可以影响熔渣的起泡性能,因此确立了该渣系下熔渣特性与发泡指数的关系。综合分析熔渣特性结果发现n(CaO)/n(Al2O3)不宜过高,最佳比值为1.4。通过对不同条件下高铝渣物性及发泡性能的试验分析,掌握高铝渣物性参数的变化规律及发泡指数,为高铝渣在冶金过程中的应用提供一定参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号