首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 95 毫秒
1.
针对双语微博情感分析方法稀缺且准确率低的问题,根据相同英文词汇在不同语境下对文本情感作用不同这一事实,提出基于注意力机制的双语文本情感分析神经网络模型。该模型使用双向循环神经网络模型学习文本的特征表示,并引入注意力机制,为文本不同词语赋予不同权重,得到融合特征后新的知识表示,从而实现双语文本情感识别。实验结果显示,与纯中文作为网络输入、纯英文作为网络输入和中英混合文本作为网络输入相比,注意力机制明显优于其他方法;与现有双语情感分析算法相比,该模型有效提升了情感分析的准确率。  相似文献   

2.
胡均毅  李金龙 《计算机工程》2020,46(3):46-52,59
文本中的词并非都具有相似的情感倾向和强度,较好地编码上下文并从中提取关键信息对于情感分类任务而言非常重要。为此,提出一种基于情感评分的分层注意力网络框架,以对文本情感进行有效分类。利用双向循环神经网络编码器分别对词向量和句向量进行编码,并通过注意力机制加权求和以获得文档的最终表示。设计辅助网络对文本的词、句进行情感评分,利用该评分调整注意力权重分布。在探究文本的情感信息对分类性能的影响后,通过辅助网络进一步促使模型关注情感色彩强烈的信息。在4个常用情感分类数据集上的实验结果表明,该框架能够关注文本中的情感表达并获得较高的分类准确率。  相似文献   

3.
方面级别文本情感分析旨在分析文本中不同方面所对应的情感趋向。传统基于神经网络的深度学习模型在文本情感分析的过程中,大多直接使用注意力机制而忽略了句法关系的重要性,即不能充分利用方面节点的上下文语义信息,导致情感趋向预测效果不佳。针对该问题,设计一种融合句法信息的图注意力神经网络模型,并将其应用于文本情感分析任务。利用预训练模型BERT进行词嵌入得到初始词向量,将初始词向量输入双向门控循环神经网络以增强特征向量与上下文信息之间的融合,防止重要上下文语义信息丢失。通过融合句法信息的图注意力网络加强不同方面节点之间的交互,从而提升模型的特征学习能力。在SemEval-2014数据集上的实验结果表明,该模型能够充分利用句法信息进行情感分析,其准确率较LSTM及其变种模型至少提升3%,对Restaurant评论进行情感分类预测时准确率高达83.3%。  相似文献   

4.
孙敏  李旸  庄正飞  余大为 《计算机应用》2005,40(9):2543-2548
针对传统卷积神经网络(CNN)不仅会忽略词的上下文语义信息而且最大池化处理时会丢失大量特征信息的问题,传统循环神经网络(RNN)存在的信息记忆丢失和梯度弥散问题,和CNN和RNN都忽略了词对句子含义的重要程度的问题,提出一种并行混合网络融入注意力机制的模型。首先,将文本用Glove向量化;之后,通过嵌入层分别用CNN和双向门限循环神经网络提取不同特点的文本特征;然后,再把二者提取得到的特征进行融合,特征融合后接入注意力机制判断不同的词对句子含义的重要程度。在IMDB英文语料上进行多组对比实验,实验结果表明,所提模型在文本分类中的准确率达到91.46%而其F1-Measure达到91.36%。  相似文献   

5.
短文本的情感分析是一项具有挑战性的任务。针对传统的基于卷积神经网络和循环神经网络无法全面获取文本中蕴含的语义信息的缺点,本文提出一种使用多头自注意力层作为特征提取器,再以胶囊网络作为分类层的模型。该模型可以提取丰富的文本信息。在中文文本上进行实验结果表明,与传统深度学习方法相比,本文提出的模型提高了情感分析的精度,在小样本数据集和跨领域迁移中,相比传统方法精度都有较大的提高。  相似文献   

6.
王丽亚  刘昌辉  蔡敦波  卢涛 《计算机应用》2019,39(10):2841-2846
传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用CNN-BiGRU联合网络进行特征学习。首先利用CNN提取深层次短语特征,然后利用双向门限循环神经网络(BiGRU)进行序列化信息学习以得到句子体系的特征和加强CNN池化层特征的联系,最后通过增加注意力机制对隐藏状态加权计算以完成有效特征筛选。在数据集上进行的多组对比实验结果表明,该方法取得了91.93%的F1值,有效地提高了文本分类的准确率,时间代价小,具有很好的应用能力。  相似文献   

7.
孙敏  李旸  庄正飞  余大为 《计算机应用》2020,40(9):2543-2548
针对传统卷积神经网络(CNN)不仅会忽略词的上下文语义信息而且最大池化处理时会丢失大量特征信息的问题,传统循环神经网络(RNN)存在的信息记忆丢失和梯度弥散问题,和CNN和RNN都忽略了词对句子含义的重要程度的问题,提出一种并行混合网络融入注意力机制的模型。首先,将文本用Glove向量化;之后,通过嵌入层分别用CNN和双向门限循环神经网络提取不同特点的文本特征;然后,再把二者提取得到的特征进行融合,特征融合后接入注意力机制判断不同的词对句子含义的重要程度。在IMDB英文语料上进行多组对比实验,实验结果表明,所提模型在文本分类中的准确率达到91.46%而其F1-Measure达到91.36%。  相似文献   

8.
作为自然语言处理领域的经典研究方向之一,特定目标情感分析的任务是根据句子上下文语境判别特定目标的情感极性,而提升该任务表现的重点在于如何更好地挖掘特定目标和句子上下文的语义表示.本文提出融合短语特征的多注意力网络(Phrase-Enabled Multi-Attention Network, PEMAN),通过引入短语级别语义特征,构建多粒度特征融合的多注意力网络,有效提高模型的表达能力.在SemEval2014 Task4 Laptop、Restaurant数据集上的实验结果表明,与基准模型相比,本文提出的PEMAN模型在准确率上有一定提升.  相似文献   

9.
方面级情感分析作为情感分析的一项细粒度任务,具有非常高的研究价值。方面词和对应的情感词之间的联系对于确定情感极性起着至关重要的作用。先前的研究大多仅利用一种注意力机制来关注句子和目标之间的联系,未考虑到词性中包含的情感信息。为解决这一问题,该文提出了一种基于ELMo的混合注意力网络(ELMo-based Hybrid Attention Network, EHAN)。与现有网络不同的是,模型不仅将ELMo与Transformer网络相结合来捕获文本信息的情感特征,还利用词性注意力机制对词性和单词进行交互获得方面与情感词之间的联系。在公开数据集上的实验结果表明,EHAN与基准模型相比在准确率和Macro-F1值上都有显著提升,证明该方法可有效改善方面级情感分析的性能。  相似文献   

10.
11.
陈郑淏  冯翱  何嘉 《计算机应用》2019,39(7):1936-1941
针对情感分类中传统二维卷积模型对特征语义信息的损耗以及时序特征表达能力匮乏的问题,提出了一种基于一维卷积神经网络(CNN)和循环神经网络(RNN)的混合模型。首先,使用一维卷积替换二维卷积以保留更丰富的局部语义特征;再由池化层降维后进入循环神经网络层,整合特征之间的时序关系;最后,经过softmax层实现情感分类。在多个标准英文数据集上的实验结果表明,所提模型在SST和MR数据集上的分类准确率与传统统计方法和端到端深度学习方法相比有1至3个百分点的提升,而对网络各组成部分的分析验证了一维卷积和循环神经网络的引入有助于提升分类准确率。  相似文献   

12.
在跨领域情感分析任务中,目标领域带标签样本严重不足,并且不同领域间的特征分布差异较大,特征所表达的情感极性也有很大差别,这些问题都导致了分类准确率较低。针对以上问题,提出一种基于胶囊网络的方面级跨领域情感分析方法。首先,通过BERT预训练模型获取文本的特征表示;其次,针对细粒度的方面级情感特征,采用循环神经网络(RNN)将上下文特征与方面特征进行融合;然后,使用胶囊网络配合动态路由来区分重叠特征,并构建基于胶囊网络的情感分类模型;最后,利用目标领域的少量数据对模型进行微调来实现跨领域迁移学习。所提方法在中文数据集上的最优的F1值达到95.7%,英文数据集上的最优的F1值达到了91.8%,有效解决了训练样本不足造成的准确率低的问题。  相似文献   

13.
针对传统的卷积神经网络(CNN)在进行情感分析任务时会忽略词的上下文语义以及CNN在最大池化操作时会丢失大量特征信息,从而限制模型的文本分类性能这两大问题,提出一种并行混合神经网络模型CA-BGA。首先,采用特征融合的方法在CNN的输出端融入双向门限循环单元(BiGRU)神经网络,通过融合句子的全局语义特征加强语义学习;然后,在CNN的卷积层和池化层之间以及BiGRU的输出端引入注意力机制,从而在保留较多特征信息的同时,降低噪声干扰;最后,基于以上两种改进策略构造出了并行混合神经网络模型。实验结果表明,提出的混合神经网络模型具有收敛速度快的特性,并且有效地提升了文本分类的F1值,在中文评论短文本情感分析任务上具有优良的性能。  相似文献   

14.
张蓉  张献国 《计算机应用》2021,41(5):1275-1281
针对虚假评论检测中不能充分利用评论的非语义特征的问题,提出了一种新的基于层次注意力机制与异构图注意力网络的层次异构图注意力网络(HHGAN)模型.首先,通过层次注意力机制学习评论文本中词级别和句级别的文档表示,重点捕获对虚假评论检测有重要意义的单词和句子;然后,将学习到的文档表示作为节点,并选取评论中非语义特征作为元路...  相似文献   

15.
袁景凌  丁远远  潘东行  李琳 《计算机应用》2021,41(10):2820-2828
对社交网络上的海量文本信息进行情感分析可以更好地挖掘网民行为规律,从而帮助决策机构了解舆情倾向以及帮助商家改善服务质量。由于不存在关键情感特征、表达载体形式和文化习俗等因素的影响,中文隐式情感分类任务比其他语言更加困难。已有的中文隐式情感分类方法以卷积神经网络(CNN)为主,这些方法存在着无法获取词语的时序信息和在隐式情感判别中未合理利用上下文情感特征的缺陷。为了解决以上问题,采用门控卷积神经网络(GCNN)提取隐式情感句的局部重要信息,采用门控循环单元(GRU)网络增强特征的时序信息;而在隐式情感句的上下文特征处理上,采用双向门控循环单元(BiGRU)+注意力机制(Attention)的组合提取重要情感特征;在获得两种特征后,通过融合层将上下文重要特征融入到隐式情感判别中;最后得到的融合时序和上下文特征的中文隐式情感分类模型被命名为GGBA。在隐式情感分析评测数据集上进行实验,结果表明所提出的GGBA模型在宏平均准确率上比普通的文本CNN即TextCNN提高了3.72%、比GRU提高了2.57%、比中断循环神经网络(DRNN)提高了1.90%,由此可见, GGBA模型在隐式情感分析任务中比基础模型获得了更好的分类性能。  相似文献   

16.
杨璐  何明祥 《计算机应用》2021,41(10):2842-2848
针对中文数据的特殊性导致判别时容易产生噪声信息,使用传统卷积神经网络(CNN)无法深度挖掘情感特征信息等问题,提出了一种结合情感词典的双输入通道门控卷积神经网络(DC-GCNN-SL)模型。首先,使用情感词典的词语情感分数对句子中的词语进行标记,从而使网络获取情感先验知识,并在训练过程中有效地去除了输入句子的噪声信息;然后,在捕获句子深度情感特征时,提出了基于GTRU的门控机制,并通过两个输入通道的文本卷积运算实现两种特征的融合,控制信息传递,有效地得到了更丰富的隐藏信息;最后,通过softmax函数输出文本情感极性。在酒店评论数据集、外卖评论数据集和商品评论数据集上进行了实验。实验结果表明,与文本情感分析的其他模型相比,所提模型具有更好的准确率、精确率、召回率和F1值,能够有效地获取句子的情感特征。  相似文献   

17.
近年来,用户在社交媒体上越来越多地使用多媒体内容来分享经历和表达情绪。相比单独的文本和图像,融合文本和图像的多媒体内容能够更为充分地揭示用户的真实情感。针对单一文本或图像的情感不明显问题,提出了一种基于卷积神经网络(CNN)的图文融合媒体的情感分析方法。该方法融合图像特征与三个不同级别(词语级、短语级和句子级)的文本特征构建CNN模型,以分析比较不同层次的语义特征对情感预测的影响。在真实数据集上的实验结果表明,通过捕捉文本情感特征和图像情感特征之间的内部联系,可以更准确地实现对图文融合媒体情感的预测。  相似文献   

18.
赵宏  孔东一 《计算机应用》2021,41(9):2496-2503
针对现有基于注意力机制的图像内容中文描述模型无法在关注信息不减弱和无缺失的条件下对重点内容进行注意力加强关注的问题,提出一种图像特征注意力与自适应注意力融合的图像内容中文描述模型.模型使用编解码结构,首先在编码器网络中提取图像特征,并通过图像特征注意力提取图像全部特征区域的注意力信息;然后使用解码器网络将带有注意力权重...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号