首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refined field pea (Pisum sativum L.) starches were prepared from air‐classified pea starch by washing or from whole pea by wet milling, and analyzed for their physicochemical and pasting characteristics in the presence of alkali and borax. Commercial corn and high amylose corn starches were included in the study for comparative purposes. The two pea starches exhibited similar physicochemical characteristics. Amylose content markedly influenced pasting and other characteristics of the corn starches. Pea starch and high amylose corn starch exhibited little viscosity development during pasting in deionized water. The presence of alkali or borax significantly altered the peak viscosities and cold paste stabilities of all four starches in a concentration dependent manner. Alkali and borax increased peak and cold paste viscosity and reduced syneresis in all cases.  相似文献   

2.
The functionality of starch from chestnut (Castanea sativa Mill.) fruits isolated by alkaline and enzymatic methods were assessed. The studied properties included: solubility, swelling power, pasting properties, synaeresis, turbidity, and thermal and rheological behaviours. In addition amylose and resistant starch content were also evaluated. Results showed that the starch isolation method induced changes in most of those properties. Extracted starches (with high contents of amylose and resistant starch) showed low and similar swelling solubility values for all of the samples. Gelatinisation temperatures were also similar (61.5-63.0 °C), but the enzymatic method induced lower consistencies at 95 °C and after holding at this temperature. High values of setback were found, which were clearly affected by the isolation method. This parameter presented lower values for starches isolated by alkaline method (160 BU and 235 BU, respectively for Martainha and Longal). Starches did not present a peak consistency during pasting. Turbidity and synaeresis values were low at room temperature. Synaeresis increased when pastes were stored at low temperatures. This effect was more evident for the material isolated by enzymatic method. All of the isolation starches presented low enthalpy values (3.0-3.5 J/g), but the activation energy was higher for Martainha starches and for starches isolated by A3S method. Pastes showed viscoelastic behaviour, with a predominance of elastic property, forming strong gels after cooling. Longal variety seems to be less resistant to the effect of isolation method. In general starches isolated by the alkali method present the best functional properties as a food ingredient.  相似文献   

3.
Lily belongs to the genus Lilium of the family Liliaceae. Starch is the main component of lily bulbs which accounts for 53–69% of their dry weight. Lily starch (LS) has B-type X-ray diffraction characterized by a peak at 5.6°, 17°, 22°, and 24°. The swelling and solubility of the LS are significantly higher than rice and corn starches. The gelatinization temperatures of the LS are much lower than maize but higher than wheat and potato starches. The pasting temperature, peak, breakdown, and setback viscosities of lily starches are falling within the range; 66.1–72.7 °C, 1409–3940 cP, 88–1206 cP, and 445–1952 cP, respectively. The range for initial temperature, gelatinization temperature range, and enthalpy for lily starches is also 56.5–64.0 °C, 3.8–10.3 °C, and 3.9–13.9 J g−1, respectively. This review focuses on the recent advances in the understanding of the composition, structure, and properties of lily starches. Furthermore, the limited modification associated with lily starches is also discussed. There is a bold attempt to compare the properties of lily starch with that of the commercial starches of corn and potato.  相似文献   

4.
The physicochemical and pasting properties of high amylose rice starches isolated using alkaline steeping method from different Korean rice cultivars, Goamy2 and Goamy, and from imported Thai rice were examined. The protein and lipid contents of the Goamy2 starch were higher than those of the other two starches. The amylose and total dietary fiber contents were ranged from 31.4 to 36.8% and from 6.3 to 8.6%, respectively. Total dietary fiber was positively correlated to amylose content. Water binding capacity was higher in the Goamy2 starch (172.2%) than in the Goamy and Thai rice starches (112.7–115.6%). The swelling power of the Goamy2 starch showed lower values, but its value at 95°C was similar to others because of its rapid increment at 85°C. The granular size of Goamy2 starch was widely distributed compared to those of others. The Goamy2 starch showed a high initial pasting temperature (92.0°C) and low breakdown and setback viscosities. The Goamy and Thai rice starch granules were polygonal‐shaped with A‐type crystals, whereas the Goamy2 starch granules were round‐shaped with B‐type crystals. Goamy and Goamy2 starches showed a single endotherm at 60.8 and 76.0°C for peak temperature and 10.0 and 11.5 J/g for gelatinization enthalpies, respectively. The Thai rice starch presented an endotherm with a shoulder peak at 68.3°C (75.3°C for the main peak) and a gelatinization enthalpy of 12.4 J/g.  相似文献   

5.
为考察直链淀粉含量对淀粉/瓜尔胶复配体系性质的影响,以不同直链淀粉含量的玉米淀粉(蜡质玉米淀粉、普通玉米淀粉和高直链玉米淀粉)为原料,加入瓜尔胶,研究复配体系的糊化、流变及凝胶特性。结果表明:瓜尔胶与直链淀粉之间的相互作用是引起淀粉复配体系黏度和稠度系数增加、成糊温度和流体指数降低的主要原因。动态流变实验结果表明淀粉中直链淀粉含量不同对复配体系的动态模量的影响也不同。在糊化过程中,随着直链淀粉含量增加,直链淀粉分子与瓜尔胶间的相互作用增强,阻碍了直链淀粉分子间的聚集重排,使得复配体系硬度值减小,3种玉米淀粉形成了质地更为柔软的凝胶。  相似文献   

6.
Effects of deproteinization on the degree of oxidation of ozonated starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs: 1, 3, 5, 10 min), and then native starches (NS) and deproteinized starches (DPS) were analyzed for protein content. Deproteinization caused a significant reduction in protein content for corn (∼21%) and sago (∼16%) starches relative to NS. Carbonyl and carboxyl contents increased significantly in all ozonated deproteinized starches (ODPS) with increasing OGT. Carbonyl and carboxyl contents of ODPS ranged from 0.03 to 0.13% and 0.14 to 0.28%, respectively. The carboxyl content for all ODPS was significantly higher than that of ozonated native starches (ONS). A Rapid Visco Analyser was used to analyze pasting properties of all starches. Deproteinization increased the pasting viscosities of corn and sago starches compared to their native forms. Generally, pasting viscosity of all ODPS decreased drastically as OGT increased. At the highest oxidation level (10 min OGT), all ODPS exhibited the lowest pasting viscosities compared to their ozonated native form, except for peak viscosity, breakdown viscosity, and setback viscosity for ozonated deproteinized corn starch. In conclusion, deproteinization as a pretreatment prior to starch ozonation successfully increased the degree of oxidation in the three types of starch studied. However, the extent of starch oxidation varied among the different starches, possibly due to differences in rates of degradation on amorphous and crystalline lamellae and in rates of oxidation of carbonyl and carboxyl groups.  相似文献   

7.
Rice starch–water suspension (20%) were subjected to high hydrostatic pressure (HHP) treatment at 120, 240, 360, 480, and 600 MPa for 30 min. Polarizing light microscope, scanning electron microscopy (SEM), rapid visco analyzer (RVA), differential scanning calorimeter (DSC), and X-ray diffraction were used to investigate the physicochemical and structural changes of starch. Microscopy studies showed that the treatment of starch with HHP under 600 MPa for 30 min resulted in a complete loss of birefringence and a gel-like appearance. The treatment of starch suspension with HHP at 600 MPa resulted in a significant increase in swelling power and solubility at low temperature (50–60 °C), but opposite trends were found at high temperature (70–90 °C). The DSC analysis showed a decrease in gelatinization temperatures and gelatinization enthalpy with increase of pressure levels. RVA viscograms of starches exhibited an increase in peak, trough, and final viscosities, peak time, and pasting temperature but decrease of breakdown, setback viscosities, and pasting temperature when pressure was increased. X-ray diffraction studies showed that the HHP treatment converted rice starch that displayed the A-type X-ray patterns to the B-type-like pattern. These results showed that the treatment of rice starch in 20% starch/water suspension at a pressure of 600 MPa for 30 min led to a complete gelatinization of starch granules.  相似文献   

8.
Cationic starch ethers of normal and waxy corn, normal and waxy barley and normal pea starch were prepared by an aqueous alcoholic process for evaluation of their functional properties as compared to the native starch controls. The native starches exhibited a wide range in average granule size (10–21 μm diameter), amylose content (0–34%) and swelling power (13–31). Cationization to degrees of substitution (DS) of 0.030–0.035 with 3-chloro-2-hydroxypropyltrimethylammonium chloride resulted in marked increases in swelling power of all starches, with little corresponding increases in starch solubility. Cationization also decreased the onset of endothermic transitions and pasting temperatures quite substantially, and promoted the development of sharp peak viscosities in the amylographs of all normal and waxy starches, including that of pea starch. Final cold viscosities of the cationic starches exhibited positive setbacks, and the cooked starch gels, after storage for 7 days at 4°C and −15°C, showed no syneresis. All cationic starches except for waxy corn were more susceptible to α-amylase hydrolysis than native control starches. The general improvement in functional properties, especially in the waxy corn, waxy barley and pea starches, due to the aqueous alcoholic-alkaline cationization process would greatly enhance their industrial applications.  相似文献   

9.
Chemical and physical properties of kiwifruit (Actinidia deliciosa var. ‘Hayward’) starch were studied. Kiwifruit starch granules were compound, irregular or dome‐shaped with diameters predominantly 4–5 µm or 7–9 µm. Kiwifruit starch exhibited B‐type X‐ray diffraction pattern, an apparent amylose content of 43.1% and absolute amylose content of 18.8%. Kiwifruit amylopectins, relative to other starches, had low weight‐average molecular weight (7.4×107), and gyration radius (200 nm). Average amylopectin branch chain‐length was long (DP 28.6). Onset and peak gelatinization temperatures were 68.9°C and 73.0°C, respectively, and gelatinization enthalpy was high (18.5 J/g). Amylose‐lipid thermal transition was observed. Starch retrograded for 7 d at 4°C had a very high peak melting temperature (60.7°C). Peak (250 RVU), final (238 RVU) and setback (94 RVU) viscosity of 8% kiwifruit starch paste was high relative to other starches and pasting temperature (69.7°C) was marginally higher than onset gelatinization temperature. High paste viscosities and low pasting temperature could give kiwifruit starch some advantages over many cereal starches.  相似文献   

10.
Resistant starch has drawn broad interest for both potential health benefits and functional properties. In this study, a technology was developed to increase resistant starch content of corn starch using esterification with citric acid at elevated temperature. Waxy corn, normal corn and high‐amylose corn starches were used as model starches. Citric acid (40% of starch dry weight) was reacted with corn starch at different temperatures (120–150°C) for different reaction times (3–9 h). The effect of reaction conditions on resistant starch content in the citrate corn starch was investigated. When conducting the reaction at 140°C for 7 h, the highest resistant starch content was found in waxy corn citrate starch (87.5%) with the highest degree of substitution (DS, 0.16) of all starches. High‐amylose corn starch had 86.4% resistant starch content and 0.14 DS, and normal corn starch had 78.8% resistant starch and 0.12 DS. The physicochemical properties of these citrate starches were characterized using various analytical techniques. In the presence of excess water upon heating, citrate starch made from waxy corn starch had no peak in the DSC thermogram, and small peaks were found for normal corn starch (0.4 J/g) and Hylon VII starch (3.0 J/g) in the thermograms. This indicates that citrate substitution changes granule properties. There are no retrogradation peaks in the thermograms when starch was reheated after 2 weeks storage at 5°C. All the citrate starches showed no peaks in RVA pasting curves, indicating citrate substitution changes the pasting properties of corn starch as well. Moreover, citrate starch from waxy corn is more thermally stable than the other citrate starches.  相似文献   

11.
Wheat of poor baking quality was steeped at temperatures ranging from 5° to 50°C, prior to starch isolation. Physicochemical properties of starch – susceptibility to α-amylase, Amylograph viscosity, and solubility in dimethylsulfoxide – and functional properties – bread and cake baking performance and thickening power – were determined. Starch yield increased as the steeping temperature increased. The susceptibility of starches to α-amylase increased significantly as the steeping temperature of grain increased above 40 °C. Amylograph consistency of starches increased due to temperature of steeping. Increasing the steeping temperature of grain increased starch solubility in dimethyl sulfoxide. Bread baking performance of starches was not significantly affected by the various treatment temperatures and bread of satisfactory quality was obtained. Cakes of very good characteristics were produced with all starches. The thickening power of starches in fillings stored at room and refrigeration temperatures was higher initially for starches isolated at higher temperature. The consistency decreased upon storage in all fillings. Starch with acceptable functional properties could be obtained from a wheat of poor baking quality.  相似文献   

12.
The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starches was evaluated. One waxy and three non-waxy rice varieties from California with a range of amylose contents of 1.6–26.5% and four methods of isolation were evaluated. A rotational rheometer (RR) was used to measure the pasting and rheological properties of starch dispersions (8% w/w). The RR pasting curves had similar shapes to those from a rapid visco-analyzer (RVA). The four treatments used for isolating starch were a protease, NaOH (0.1% and 0.4%), or sodium dodecyl sulfate (SDS) (1.0%). The NaOH (0.4%) and SDS treatments were found to reduce the peak pasting temperatures of the non-waxy starches as compared with the protease and NaOH (0.1%) treatments. The same trend of the treatments was found with the elastic moduli, low shear viscosities, and yield stresses of the non-waxy starch pastes measured at 65 °C, immediately after pasting. The elastic moduli of the waxy starch pastes appeared to be least affected by method of starch isolation, but the low shear viscosity and yield stress of the protease starch paste was significantly higher than the paste from the other three treatments. Overall, the method of rice starch isolation was found to affect the gelatinization and rheological characteristics of hot rice starch paste.  相似文献   

13.
Physicochemical properties of commercial mung bean starch isolated with lactic acid fermentation solution (LFS) and starches laboratory-prepared by using NaOH, Na2SO3 and distilled water as steeping liquors were examined with the aim of elucidating the effect of different steeping liquors on the properties of starches. Results indicated that the amylose content, granular morphology and X-ray diffraction pattern of starches isolated with different steeping liquors did not show obvious differences. However, the LFS-isolated starch had significantly (p < 0.05) higher weight percentage of longer B chains and B1 chains, a lower weight percentage of A chains and a lower ratio of short-to-long chains in amylopectin than those of the other preparations. Moreover, the LFS-isolated starch showed significantly (p < 0.05) lower pasting viscosity, a higher onset temperature, a narrower temperature range and a lower enthalpy of gelatinization than the other preparations. No significant differences on the physicochemical properties mentioned above were found among the laboratory-prepared starches. The results suggest that mung bean starch is degraded during isolation with lactic acid fermentation solution, which leads to the loss of starch granules with less integrity.  相似文献   

14.
Yellow dent corn soaked in deionized water at 52°C for 24 h without addition of SO2 was wet‐milled using a modified 100‐g laboratory procedure employing ultrasound treatment at different points in the milling process and compared to conventional wet milling and milling‐only corn. Starch yields from ultrasound treatments varied from 66.93 to 68.72% and were comparable to conventional wet milling (68.92%). The ultrasound treated samples produced 6.35 to 7.02 more percentage point starch compared to the milling‐only corn. Compared to the starch from milling‐only corn, the ultrasound‐produced starches showed a significant increase in whiteness and decrease in yellowness that are comparable to starches produced by conventional wet milling. Ultrasound treatment after the second grinding produced the highest starch yield and the lowest protein content in the resulting starch. The ultrasound‐treated starches exhibited different pasting properties as evidenced by higher paste viscosities.  相似文献   

15.
Starches were isolated from the two genotypes of Amaranthus cruentus most widely cultivated in China, R104 and K112. These starches, plus a corn starch standard were mixed with either distilled water or a 1% NaCl solution and characterized for gelatinization parameters by Differential Scanning Calorimetry (DSC), pasting properties using a Rapid Visco-Analyzer (RVA), and texture of the cooled gels. Significant findings were: 1. A. cruentus starches had higher gelatinization temperature and higher endothermic energy than corn starch; 2. Wide differences in pasting properties were found between the two A. cruentus genotypes, although the waxy line R104 had lower hot-paste viscosity and set-back than K112; 3. The pasting properties (peak viscosity and set-back), of K112 were similar to those of corn starch. 4. In 1% NaCl solution, compared to distilled water, corn starch set-back decreased while that of the A. cruentus starches increased. Where Amaranthus starch is to be used in food processing applications, careful selection of genotype is necessary to achieve desired functionality.  相似文献   

16.
To develop a plant-based biomaterial source, the physicochemical properties of starch from Castanopsis cuspidate fruit, grown in Jindo, Korea, were investigated. The starch was isolated from the fruit using an alkali steeping method. This starch had high amylose content (56.1%). The total dietary fiber and water binding capacity of starch were 7.1 and 140.8%, respectively. The swelling power of the starch increased more rapidly than that of the flour, and the solubility of the flour was higher than that of the starch but it did not change with increasing temperature. The starch exhibited B-type crystallinity, and the starch granules were polygonal or irregular shapes. The initial pasting temperature of the flour was higher than that of the starch. The peak, trough, and final viscosities of the starch were 631.1, 364.4, and 461.8 RVU, respectively. The starch for onset gelatinization temperature (To), peak temperature (Tp), conclusion temperature (Tc), and enthalpy of gelatinization (δH) were 56.0, 61.3, 72.4°C, and 14.1 J/g, respectively.  相似文献   

17.
The physicochemical properties of wx potato, wx corn, and wx rice starches were examined and compared. wx potato starch displayed the B‐type XRD pattern, whereas wx rice and wx corn displayed the A‐type. Shapes of wx potato starch were oval or slightly round, wx corn and wx rice starch granules were polygonal. AM contents of the three starches were between 1.0 and 1.5%. Rapid viscosity analyzer data showed initial pasting temperatures of wx potato, wx corn, and wx rice starches as 69.6, 75.4, and 76.8°C, respectively, peak viscosity, breakdown, and setback of wx potato starch were 2114, 1084, and 4 mPa s. Using DSC, onset temperature of gelatinization of wx potato starch was 5.5–7.2°C higher than those of wx rice and wx corn starches. The thermal enthalpies of the starches studied in our laboratory were in the range of 0.2268–1.9900 J/g with decreasing order of wx potato > wx corn > wx rice starch.  相似文献   

18.
A new starch was isolated from fruits of two acorn species, Quercus rotundifolia and Quercus suber by alkaline (A3S) and enzymatic (ENZ) methods and physical and functional properties were studied. The isolation method induced changes in most of those properties in the isolated starches, mainly in resistant starch content, syneresis, pasting, thermal and rheological properties. Isolated acorn starches presented high amylose content (53–59%) and resistant starch content (30.8–41.4%). Acorn starches showed limited and similar solubility values and swelling power values, showing a gradual increase from 60 °C to 90 °C. The pasting temperatures ranged from 67.5 to 72.0 °C and pastes did not present breakdown, which is suggestive of a high paste stability of acorn starches during heating. At ambient temperature the turbidity and syneresis values were low, but when held at freezing temperatures the syneresis significantly increased. Thermal analysis revealed that the acorn starches easily undergo transition phenomena as shown by the low To and enthalpy values (4.1–4.3 J/g), these effects were more evident in starches isolated by ENZ method. Pastes are more elastic than viscous and form strong gels after cooling. Q. suber starch was shown to be more sensitive to the effect of isolation method. Generally, starch isolated by enzymatic method presented less interesting functional properties, since this isolation procedure greater affected the raw structure of starches.  相似文献   

19.
以糯玉米品种渝糯7号和普通玉米品种农大108为材料,研究了不同的反应程序和淀粉浓度对其快速黏度测定(RVA)谱特征值的影响,同时比较了糯玉米和普通玉米淀粉在不同反应程序和淀粉浓度条件下的差异。结果表明:(1)玉米淀粉的RVA特征值在不同反应程序下发生了改变,但其没有改变糯玉米和普通玉米之间的差异,在不同反应程序下,相对于普通玉米淀粉,糯玉米淀粉的峰值黏度和沉降值较高,而谷值黏度、终值黏度、回复值、峰值时间和糊化温度较低。(2)糯玉米和普通玉米淀粉的RVA特征值受到浓度影响,随着淀粉浓度的增加,峰值黏度、谷值黏度、沉降值、终值黏度和回复值随之增加,峰值时间略有降低,浓度太低时淀粉不能糊化,在能糊化条件下则随着浓度的增加而降低。在低浓度条件下,糯玉米淀粉的峰值黏度高于普通玉米,而在较高浓度(11%)条件下,糯玉米淀粉的峰值黏度则低于普通玉米淀粉。  相似文献   

20.
进行了糯小麦辛烯基琥珀酸淀粉酯性质的测定,结果表明,经过OSA改性之后,糯小麦辛烯基琥珀酸淀粉酯糊的粘度、透明度、凝沉性和冻融稳定性得到显著改善。当取代度由0增加至0.0144时,淀粉糊的峰值粘度由3228.00cP增加到5309.00cP。而峰值时间却由3.4min降至2.9min。透光率由28.31%提高到69.52%,25℃下静置14d时析出水的体积由22.63mL降低为0.23mL,经过4次冻融循环后的析水率由54.25%降至3.72%。并且,蔗糖与SSOS相互作用,使淀粉糊的透明度和凝沉性增加,抗老化稳定性增强;NaCl使淀粉糊的透光率降低,凝沉性下降,淀粉糊不稳定,易于老化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号