共查询到18条相似文献,搜索用时 78 毫秒
1.
在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。 相似文献
2.
针对基本灰狼优化算法(GWO)易陷入局部最优的缺点,将双子群策略引入灰狼算法,提出一种采用动态双子群策略改进的灰狼算法(DDGWO).该算法动态的将灰狼种群划分为较优子群和较差子群,较优子群与较差子群采用不同的非线性收敛因子,在进行全局搜索时,能够有效避免陷入局部最优.本文将DDGWO应用于SVM参数优化,并建立DDGWO-SVM模型进行心电信号识别实验,并与其他算法进行性能测试对比.结果表明,DDGWO具有更好的寻优特性,所建立的DDGWO-SVM模型获得了更高的心电分类识别精度. 相似文献
3.
为了解决灰狼优化算法在函数优化过程中搜索精度不高的问题,提出了一种分群优化、高斯变异和随机扰动混合策略改进的灰狼优化算法.一方面,通过采用分群优化策略,加强算法局部搜索与全局搜索之间的信息交换;另一方面,采用高斯变异和随机扰动策略维持算法进化过程中的种群多样性,并利用贪婪思想更新种群.通过引入包含单峰、多峰和固定维度多... 相似文献
4.
灰狼优化算法(grey wolf optimization,GWO)存在收敛的不合理性等缺陷,目前对GWO算法的收敛性改进方式较少,除此之外,当GWO迭代至后期,所有灰狼个体都逼近α狼、β狼、δ狼,导致算法陷入局部最优。针对以上问题,提出了一种增强型的灰狼优化算法(disturbance and somersault foraging-grey wolf optimization,DSF-GWO)。首先引入一种扰动因子,平衡了算法的开采和勘探能力;其次引入翻筋斗觅食策略,在后期使其不陷入局部最优的同时也使得前期的群体多样性略有提升。对DSF-GWO算法的寻优性能进行验证,选取14个单/多峰目标函数进行实验,在相同的参数设置下,结果表明DSF-GWO算法在寻优性能上较GWO算法有明显优势。 相似文献
5.
针对灰狼优化算法后期收敛速度慢,求解精度低等问题,提出一种基于模糊控制的权重决策灰狼优化算法.首先,提出一种新的非线性收敛因子,以提高算法的全局搜索能力及收敛速度;其次,提出一种基于模糊控制的权重决策策略,通过模糊控制器对决策层的个体赋予不同权重进行种群位置更新的决策,增强算法的寻优能力.选取23个标准测试函数对该算法及对比算法进行数值实验,实验结果表明,本文提出的改进的灰狼优化算法在求解精度和算法稳定性等指标优于对比算法. 相似文献
6.
基于改进自组织临界优化的元启发式灰狼优化算法 总被引:1,自引:0,他引:1
针对新型元启发式算法灰狼优化(GWO)算法在寻优过程中易陷入局部最优这一问题,提升该算法获取全局最优解的能力。介绍了该算法的基本原理和建模过程,并在此基础上,结合自组织临界性理论的优点,提出了改进的极值优化(IEO)算法,将IEO融入到GWO模型中,构建基于自组织临界(SOC)优化的改进GWO算法(IEO-GWO)。通过与传统优化算法对于23个基准测试函数在寻优性能上的综合比较,验证了IEO-GWO模型在获取全局最优解性能上的优越性。 相似文献
7.
针对传统的灰狼算法(GWO)易陷入局部最优、后期收敛速度慢等问题,提出一种非线性控制参数组合调整策略.对3种不同的非线性参数控制策略的调节因子a进行仿真,并分析影响搜索参数A的因素;对5组不同的调节参数值进行基准函数的测试仿真,选择权重系数的非线性控制参数组合策略的最佳参数值.仿真结果表明,所提出的非线性控制参数组合调... 相似文献
8.
针对灰狼优化算法(GWO)存在较为严重的收敛性缺陷问题,提出了一种基于杂交策略的自适应灰狼优化算法(AGWO)。首先引入非线性收敛因子,以平衡算法的全局搜索性和局部开发性;其次引进遗传杂交策略,对灰狼群体以一定概率两两杂交以产生新个体,从而有效增强灰狼群体的多样性;同时为避免算法后期陷入局部最优解,受蝠鲼觅食策略的启发,引入蝠鲼觅食策略并加入了动态自适应调节因子以调节群体的多样性,有效提升算法的收敛精度及全局寻优性能。通过选取CEC2014中11个基准测试函数进行实验,与其他相关算法横纵向对比分析,多方位验证了AGWO算法的综合寻优性能。实验结果表明,在相同参数设置下,AGWO算法的收敛速度及综合寻优性能明显优于其他比较算法。 相似文献
9.
针对标准灰狼优化算法(GWO)的收敛速度慢、易陷入局部最优等缺点,提出一种在非线性双收敛因子策略下基于双头狼引领的改进灰狼优化(GWO-THW)算法。首先,利用混沌Cubic映射初始化种群,提升种群分布的均匀性和多样性,并通过平均适应度值将狼群分为捕猎狼和侦察狼,两类狼群采用不同的收敛因子,在各自的头狼带领下寻找和围捕猎物;其次,为提升搜索速度和精度,设计了一种位置更新的自适应权重因子;同时,为跳出局部最优,当一定时间内未发现猎物时,狼群采用莱维(Levy)飞行策略随机更新位置。在10个常用的基准测试函数上验证GWO-THW的有效性。实验结果表明,与标准GWO及相关变体相比,GWO-THW在8个基准测试函数上都取得了较高的寻优精度和收敛速度,尤其在多峰函数上,200次迭代内就能收敛到理想最优值,从而验证了GWO-THW具有更好的寻优性能。 相似文献
10.
11.
求解约束优化问题的改进灰狼优化算法 总被引:3,自引:0,他引:3
针对基本灰狼优化(GWO)算法存在求解精度低、收敛速度慢、局部搜索能力差的问题,提出一种改进灰狼优化(IGWO)算法用于求解约束优化问题。该算法采用非固定多段映射罚函数法处理约束条件,将原约束优化问题转化为无约束优化问题,然后利用IGWO算法对转换后的无约束优化问题进行求解。在IGWO算法中,引入佳点集理论生成初始种群,为算法全局搜索奠定基础;为了提高局部搜索能力和加快收敛,对当前最优灰狼个体执行Powell局部搜索。采用几个标准约束优化测试问题进行仿真实验,结果表明该算法不仅克服了基本GWO的缺点,而且性能优于差分进化和粒子群优化算法。 相似文献
12.
针对现有的固定端传感器土壤墒情监测预测系统架设成本高、传感器易损坏、预测精度较低等问题,设计并实现了基于非固定无线传感器组网与改进灰狼算法优化神经网络的土壤墒情监测预测系统。系统使用非固定即插即用式传感器蓝牙组网收集墒情数据,使用高精度多源定位接入融合方法进行广域室外高精度定位。在算法方面,针对灰狼算法在迭代中后期易陷入局部最优等问题,提出一种基于末尾探索者策略的改进灰狼算法。首先,根据种群个体适应度值排名,在原有算法个体类型中增加探索者类型。然后,将种群搜索分为三个时期:活跃探索期、周期探索期和种群回归期。最后,在每个时期使用特有的位置更新策略进行探索者位置调整,使得算法在探索初期更具随机性,在探索中后期依然保持一定的解空间搜索能力,从而增强算法的局部最优回避能力。使用标准函数进行算法性能测试,并将该算法应用于优化土壤墒情神经网络预测模型问题,使用某市2号试验田的数据进行实验。实验结果表明,所提算法与直接神经网络预测模型相比,相对误差下降约4个百分点;与传统灰狼算法、粒子群优化(PSO)算法优化模型比较,相对误差下降约1至2个百分点。所提算法拥有更小的误差,更好的局部最优回避能力,能有效提高墒情的预测质量。 相似文献
13.
针对单一机制的灰狼优化算法(GWO)易陷于局部最优、收敛速度慢的问题,提出了一种改进灰狼优化(IGWO)算法来解决实际铁路物流配送中心选址的问题。首先,在基本的灰狼优化算法的基础上,引入佳点集理论初始化种群,从而提高了初始种群的多样性;然后,利用差值剔除策略(DES)来增加全局寻优能力,以达到一种高效的寻优模式。仿真实验结果表明:与标准的灰狼算法相比,所提出的IGWO适应度值提高了3%,在10个测试函数中最优值精度可最多提高7个单位;与粒子群优化(PSO)算法、差分进化(DE)算法和遗传算法(GA)比较,所提算法的运行速度分别提高了39.6%、46.5%和65.9%,选址速度也明显提高。可见所提算法可用于铁路物流中心的选址。 相似文献
14.
为了解决多目标灰狼优化算法(MOGWO)易陷入局部最优,稳定性差等缺点,基于对算法寻优时灰狼个体运动情况的分析,提出了两条改进策略:一是通过引入“观察”策略赋予灰狼个体自主探索的能力,以提高算法的优化效率和跳出局部最优的能力;二是改进控制参数调整策略,选用幂函数取代线性函数以提高算法的稳定性。然后对两条改进策略进行了可行性分析,提出了带观察策略的多目标灰狼算法并进行了算法复杂度分析。最后通过对6个不同特点测试函数的多次重复实验,结合GD与IGD两种通用评价指标,对原算法、改进后算法和多目标粒子群算法进行比较,从算法效率、寻优能力和稳定性等方面综合验证了算法改进的有效性和优越性。 相似文献
15.
针对大规模Web服务环境中难以获得整体性能高的组合服务的问题,提出了一种大规模Web服务组合方法。首先,采用文档对象模型(DOM)对XML格式的用户需求描述文档进行解析,以生成抽象Web服务组合序列;然后,采用服务主题模型进行服务筛选,并为每个抽象Web服务选取Top-k个具体Web服务从而缩减组合空间;接着,为提高服务组合质量和组合效率,提出了一种基于Logistic混沌映射和非线性收敛因子的优化的灰狼算法(OGWO/LN)来进行最优服务组合方案选择;该算法采用混沌映射来生成初始种群以增加服务组合方案的多样性,并避免了多次局部寻优;同时,提出一种非线性收敛因子来调节算法的搜索能力以提高算法的寻优性能;最后,采用MapReduce框架对OGWO/LN进行了并行实现。在真实数据集上的实验结果表明,所提算法与IFOA4WSC、MR-IDPSO、MR-GA等算法相比,平均适应度值分别提高了8.69%、7.94%和12.25%,在解决大规模Web服务组合问题时具有更好的寻优性能和稳定性。 相似文献
16.
针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO——DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.445 0 s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。 相似文献
17.
针对标准灰狼优化算法在求解复杂工程优化问题时存在求解精度不高和易陷入局部最优的缺点,提出一种新型灰狼优化算法用于求解无约束连续函数优化问题。该算法首先利用反向学习策略产生初始种群个体,为算法全局搜索奠定基础;受粒子群优化算法的启发,提出一种非线性递减收敛因子更新公式,其动态调整以平衡算法的全局搜索能力和局部搜索能力;为避免算法陷入局部最优,对当前最优灰狼个体进行变异操作。对10个测试函数进行仿真实验,结果表明,与标准灰狼优化算法相比,改进灰狼优化算法具有更好的求解精度和更快的收敛速度。 相似文献
18.
针对不相关并行机调度问题,面向降低能源消耗和减少完工时间的目标,提出一种更高效的基于十进制整数编码的多目标灰狼算法.求解时,采用将资源配置与作业排序相结合的十进制整数编码方式,设计了针对多目标离散调度问题的两阶段位置更新机制.同时引入了N S GA-Ⅱ的精英保留策略,提高了算法的寻优能力,应用最大迭代次数停止准则结束循环并保留最优解.最后,通过数值实验与有代表性的前沿算法进行仿真对比,以验证所提算法的可行性与有效性. 相似文献