共查询到10条相似文献,搜索用时 62 毫秒
1.
随着基于位置服务的广泛应用,时间依赖路网上的对象查询逐渐成为研究热点。以往研究大多只针对时间依赖路网上的静态对象(如加油站、餐厅等),未考虑到移动对象(如出租车)的情况,而移动对象的查询在日常生活中有着非常广泛的应用场景。因此,文中提出了一种针对时间依赖路网上的移动对象K近邻查询算法TD-MOKNN,该算法分为预处理阶段和查询阶段。在预处理阶段,通过建立路网和网格索引,提出了一种新的移动对象到路网的映射方法,解除了以往研究假设移动对象恰好在路网顶点上的限制;在查询阶段,采用启发式搜索,借助倒排网格索引计算了一种新的高效启发值,通过预处理信息和启发值设计了高效K近邻查询算法,并给出了算法的正确性证明和时间复杂度分析。实验验证了所提算法的有效性,相比现有算法,TD-MOKNN算法在遍历顶点数和响应时间上分别减少了55.91%和54.57%,查询效率平均提升了55.2%。 相似文献
2.
针对实际应用中用户在真实路网上进行移动服务(如出租车,救护车,外卖等)的查询需求,提出反向时间依赖路网上移动对象的k近邻查询问题.在分析现有查询算法的不足后,建立了反向时间依赖路网和基于标记点的最短路径树.并在此基础上,给出了一种针对反向时间依赖路网上移动对象的k近邻查询算法TDSPT-kNN.通过采用基于最短路径树的... 相似文献
3.
针对DBSCAN算法聚类参数敏感不易获取、参数固定无法适应密度不均匀数据等问题。提出了动态近邻的概念,即聚类参数随密度动态变化。设计了用于调整动态参数的近邻规模演化算法,即通过限制相对密度变化率,逐步调整近邻规模。最后根据动态的近邻规模,重新定义了DBSCAN算法核心对象的概念,并设计了基于动态近邻的DN-DBSCAN算法。仿真结果表明,DN-DBSCAN能够有效识别非凸及密度分布不均匀的数据样本,聚类效果优于传统DBSCAN算法和其他经典改进算法。 相似文献
4.
5.
针对传统K近邻(K-nearest neighbor)方法用于数据分类存在分类精度低的问题,将特征选择与KNN分类方法结合,并利用改进海洋捕食者算法对数据特征进行优化研究。使用领域学习提供丰富邻域位置信息扩大海洋捕食者的搜索范围,引入维度变异机制增加种群多样性避免过早陷入局部最优,利用正余弦扰动算子和跳跃步长控制因子更新捕食者位置,加强全局搜索和局部搜索能力。将特征选择对象作为优化目标,获得所选的最优特征子集。通过对14个经典测试函数优化测试和14组经典数据集的分类研究,在优化性能、平均特征子集数和平均分类精度进行对比研究,实验结果表明所提算法能够有效降低冗余特征干扰,实现特征提纯,在数据挖掘中具有广阔的应用前景。 相似文献
6.
针对传统的k-近邻(k-nn)方法的缺点,将聚类中的K均值和分类中的k近邻算法有机结合,提出了一种改进的k-nn快速分类算法。实验表明该算法在影响分类效果不大的情况下能达到快速分类的目的。 相似文献
7.
连续k近邻查询(continuous k-nearest neighor,Ck NN)定义为查找指定路径上每个点的k个最小代价数据对象。目前关于Ck NN的研究都是在欧式空间与静态路网中实现的,这些算法不能直接应用到边权值变化的时间依赖路网中。定义并解决了时间依赖路网中的Ck NN问题,利用积分的性质以及通过对权值代价函数合并的方式提出了两阶段的基于分割点的Ck NN查询算法。过滤阶段提出了计算节点到达时间的方法,再利用到达时间查询出多个候选k近邻结果;求精阶段将查询点到候选结果的权值函数合并,通过计算函数交点得到分割点,进而为查询返回若干个分割点以及相应区间内的k近邻结果。实验结果表明,与进行多次快照k近邻查询相比,所提算法在响应时间上减少了近一个数量级。 相似文献
8.
9.
针对已有的在路网中的反向最近邻(Reverse Nearest Neighbor,RNN)查询方法存在的不足,提出了利用网络Voronoi图(Network Voronoi Diagram,NVD)的NVD-RNN算法,该算法具有较好的效果,它把路网划分成小的Voronoi区域,并且采用了两个过程:过滤过程和精炼过程。过滤过程主要是提前存储可能的查询结果。精炼过程主要是从可能的结果集合中找到查询结果。并且进一步给出了处理新增加点的ADDNVD-RNN算法和处理删除点的DENVD-RNN算法。实验表明,该算法在处理路网中的反向最近邻问题时有明显的优势。 相似文献
10.
基于路由机制的时变路网k近邻算法 总被引:1,自引:1,他引:0
针对现实生活中动态路网的地理信息查询问题,提出了一种基于路由机制的动态路网中k近邻查询的算法。其主导思想是利用空间换时间,用路由表保存历史查询结果,用查询路由表的方法代替传统的最短路径计算,通过历史数据减少系统重复计算并对车辆行驶路径进行规划,用更新路由表的方法适应路况的变化。围绕路由表这一核心,改进相应的k近邻算法的过滤、精炼过程。通过路由表对动态路网进行少量的预处理,减少系统在k近邻搜索中的候选点数量,缩小查询范围,提高搜索效率。 相似文献