首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

2.
The numerical analysis of low cycle fatigue of HTS‐A steel welded joints under combined bending and local compressive loads are implemented using the damage mechanics approach. First, a finite element numerical simulation of the welding process is employed to extract the welding residual stresses, which are then imported as initial stresses in the subsequent fatigue analysis. Second, a multiaxial fatigue damage model including damage coupled elasto‐plastic constitutive equations and plastic damage evolution formulation is applied to evaluate the mechanical degradation of the material under biaxial fatigue loads. Further, the fatigue lives of the HTS‐A steel welded joints are computed and compared with the experimental results from literature. A series of predicted load‐life curves clearly illustrates the variation of fatigue lives along with the combined loadings. Finally, the effects of local compression on accumulated plastic strain and fatigue damage are studied in detail. It is revealed that the local compression induces a damage competition between two critical zones.  相似文献   

3.
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading.  相似文献   

4.
Notch effects on axial and torsion fatigue behaviors of low carbon steel were investigated. Fully-reversed tests were conducted on thin-walled tubular specimens with or without a transverse circular hole. A shear failure mechanism was observed for both smooth and notched specimens and under both axial and torsion loadings. The notch effect was more pronounced under axial loading, in spite of higher stress concentration factor in torsion. The commonly used nominal SN approach with fatigue notch factor in conjunction with von Mises effective stress resulted in overly conservative life predictions of both smooth and notched torsion fatigue lives. Neuber’s rule yielded notch root stress and strain amplitudes close to the FEA results for both axial and torsion loadings. The local strain approach based on effective strain obtained from Neuber’s rule or FEA resulted in poor correlation of the fatigue life data of smooth and notched specimens. The Fatemi–Socie critical plane parameter represented the observed failure mechanism and resulted in very good correlations of smooth and notched specimens fatigue data under both axial and torsion loadings. In block loading tests with equal number of alternating axial and torsion cycles at the same stress level, beneficial effect of axial loading was observed. Possible potential reasons for this unexpected behavior are discussed.  相似文献   

5.
A method for evaluating the cumulative damage resulting from the application of cyclic stress (or strain) sequences of varying amplitude is presented. Both the crack initiation and propagation stages of the fatigue failure process are included. The development is based on the concept of plastic strain energy dissipation as a function of cyclic life. The damage accumulated at any stage is evaluated from a knowledge of the fatigue limit in the initiation phase and an ‘apparent’ limit obtained through fracture mechanics for the propagation phase. The proposed damage theory is compared with two-level strain cycle test data of thin-walled specimens, and is found to be in fairly good agreement.  相似文献   

6.
The aim of this work is to understand the influence of notches under thermomechanical fatigue (TMF) in a directionally solidified Ni‐base superalloy. Experiments were performed utilizing linear out‐of‐phase and in‐phase TMF loadings on longitudinally oriented smooth and cylindrically notched specimens. Several notch severities were considered with elastic stress concentrations ranging from 1.3 to 3.0. The local response of the notched specimens was determined using the finite element method with a transversely isotropic viscoplastic constitutive model. Comparing the analysis to experiments, the locations observed for crack nucleation in the notch, which are offset from the notch root in directionally solidified alloys, are consistent with the maximum von Mises stress. Various local and nonlocal methods are evaluated to understand the life trends under out‐of‐phase TMF. The results show that a nonlocal invariant area‐averaging method is the best approach for collapsing the TMF lives of specimens with different notch severities.  相似文献   

7.
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate.  相似文献   

8.
The aim of this paper is to develop an elastic–plastic‐damage constitutive law and a tool for simulation of delamination initiation and propagation in fibre metal laminates (FMLs) under low‐cycle fatigue loading regime. In the previous studies, the significance of plasticity in delamination growth and modelling of FMLs was not considered. Hence, cohesive zone law that combines the damage evolution with plasticity is developed. The new fatigue damage model is implemented as user‐written subroutines that links with ansys based on the cohesive finite element method. The cohesive zone model constitutive law has been verified by modelling of the delaminated adhesively bonded aluminium joint under normal and shear loadings and compared with the available results in the literature. The developed procedure and tool have been used for the analyses of DCB and ENF specimens under uniform and variable loadings. The obtained results for progressive damage and delamination and stress–strain curves are discussed in this paper.  相似文献   

9.
Comparative Investigations on Service Life Assessment of Notched Specimens Based on the Local Strain and the Nominal Stress Approach to Fatigue for a Steel SAE 1017 It is still unclear whether the strain based approach to fatigue or the stress based approach to fatigue should be preferred for service life assessment of notched components. In order to clarify the similarities and differences between these concepts stress and strain controlled fatigue experiments have been performed with notched specimens. It has been found, that stress and strain controlled fatigue testing results in the same number of cycles until failure. Essential for this correlation is that the cyclic stable strain amplitude at the notch root is taken for the entry into the strain‐life diagram in both cases. Starting from an elastic‐plastic analysis of the material behaviour at the notch root it is shown, how the strain‐life curve can be converted into a stress‐life curve. Based on that result service‐life is calculated from both approaches mentioned above. The calculation gives nearly the same service‐lives for both cases, but overestimates the measured data. It becomes obvious, that a S‐N curve determined under one‐level loading doesn’t provide a proper basis for service life assessment. While strain or stress‐life curves always contain crack initiation phase as well as crack propagation phase, the fatigue process under irregular loads is mainly governed by crack propagation. As a consequence, the damage per cycle is underestimated for loads near the fatigue limit, if Miner’s rule is used.  相似文献   

10.
Fatigue tests were conducted on S45C steel under fully reversed strain control conditions with axial/torsional ( at ) and torsional/axial ( ta ) loading sequences. The linear damage value (n1/N1+n2/N2) was found to depend on the sequence of loading mode ( at or ta ), sequence of strain amplitude (low/high or high/low) and life fraction spent in the first loading. In general, at loading yields larger damage values than ta loading and the low–high sequence of equivalent strain leads to larger damage values than the high–low sequence. The material exhibits cyclic softening under axial cyclic strain. Cyclic hardening occurs in the torsion part of ta loading, which elevates the axial stress in the subsequent loading, causing more damage than in pure axial fatigue at the same strain amplitude. Fatigue life is predicted based on the linear damage rule, the double linear damage rule, the damage curve approach and the plastic work model of Morrow. Results show that overly conservative lives are obtained by these models for at loading while overestimation of life is more likely for ta loading. A modified damage curve method is proposed to account for the load sequence effect, for which predicted lives are found to lie in the factor‐2 scatter band from experimental lives.  相似文献   

11.
In this paper, the low‐cycle fatigue characteristics of cold‐drawn steel were investigated under strain‐controlled uniaxial fatigue load. Cyclic softening was observed throughout fatigue life except for the initial relatively short period which exhibited cyclic hardening. Positive mean stress was found under fully reversed strain loading, indicating that there was a significant cyclic asymmetry. A modified local stress–strain method was proposed to estimate fatigue life of notched tension‐compression asymmetric material. In order to verify this method, fatigue experiments on two kinds of notched specimens with different notch radius were carried out under constant and block load spectrum. It was found that the modified local stress–strain method was more accurate than the traditional ones, the maximum relative error between predicted and experimental fatigue life was less than 6%.  相似文献   

12.
In this study, we propose a new two‐scale fatigue model based on continuum damage mechanics. A representative volume element (RVE) consisting of microinclusions and a matrix is constructed. Further, damage‐coupled constitutive equations are derived. The degradation in the mechanical properties of the RVE is determined by the damaged inclusions and matrix using the Mori‐Tanaka scheme. A numerical calculation of the fatigue lives of notched specimens is executed. This new model predicts high‐cycle fatigue (HCF) life more effectively, considering the two‐segment characteristic of S‐N curves of smooth specimens. This study provides novel insights into the evolution mechanism of HCF damage.  相似文献   

13.
This work deals with the fatigue behaviour of S355NL steel welded joints classically used in naval structures. The approach suggested here, in order to estimate the fatigue crack initiation life, can be split into two stages. First, stabilized stress–strain cycles are obtained in all points of the welded joint by a finite element analysis, taking constant or variable amplitude loadings into account. This calculation takes account of: base metal elastic–plastic behaviour, variable yield stress based on hardness measurements in various zones of the weld, local geometry at the weld toe and residual stresses if any. Second, if a fast elastic shakedown occurs, a two-scale damage model based on Lemaitre et al. 's work is used as a post-processor in order to estimate the fatigue crack initiation life. Material parameters for this model were identified from two Wöhler curves established for base metal. As a validation, four-point bending fatigue tests were carried out on welded specimens supplied by 'DCNS company'. Two load ratios were considered: 0.1 and 0.3. Residual stress measurements by X-ray diffraction completed this analysis. Comparisons between experimental and calculated fatigue lives are promising for the considered loadings. An exploitation of this method is planned for another welding process.  相似文献   

14.
In this paper generalized criteria of multiaxial random fatigue based on stress, strain and strain energy density parameters in the critical plane have been discussed. The proposed criteria reduce multiaxial state of stress to the equivalent uniaxial tension–compression or alternating bending. Relations between the coefficients occurring in the considered criteria have been derived. Thus, it is possible to take into account fatigue properties of materials under simple loading states during determination of the multiaxial fatigue life. Presented models have successfully correlated fatigue lives of cast iron GGG40 and steel 18G2A specimens under constant amplitude in‐phase and out‐of‐phase loadings including different frequencies.  相似文献   

15.
16.
Finite‐element predictions of creep rupture in notched specimens are presented in this work. A damage model linked to the creep strain rate and stress triaxiality has been used to predict creep life under multiaxial stress conditions and the predictions have been compared with experimental data for a C–Mn steel. Finite‐element analyses have been conducted using primary–secondary (PS) and primary–secondary–tertiary (PST) creep laws. As expected a PST analysis gives a shorter predicted rupture life than a PS analysis. An additional term was included in the model to allow for an increase in hydrostatic strain due to creep damage. The incorporation of this term improved the agreement between the experimental data and the finite‐element predictions. A further enhancement to the model was to model the initiation and growth of a sharp crack in the vicinity of the notch, through the use of a nodal release technique linked to the damage evolution. It was found that the predictions obtained using the nodal release technique were very similar to those from the PST creep model incorporating the hydrostatic damage term. The effect of mesh size has also been examined and the finite‐element predictions were seen to be quite mesh sensitive with a finer mesh generally giving a shorter predicted life.  相似文献   

17.
Comparing with the fatigue test results of Ti‐6Al‐4V, the widely used Chaboche damage model shows considerable differences in fatigue life prediction under asymmetric load, which is potentially caused by the local plastic deformation. In this paper, a modified nonlinear damage accumulation model is developed to improve the prediction accuracy for asymmetric loading condition. To account for the elastic and plastic strains, an elastoplastic fatigue factor is developed with 2 weighting factors based on the Ramberg‐Osgood equation and introduced into the stress term of the damage model. The validation of the proposed damage model is verified against the experimental data of Ti‐6Al‐4V titanium alloy and 2024‐T3 aluminium alloy with various stress ratios. Comparing with the original Chaboche model, the predicted life of the proposed model shows much better agreement with the experimental results. Then, the proposed model is used to estimate the fatigue life of a compressor blade of aero‐engine. Considering the variable amplitude loads and the loading sequence, the damage accumulation and the fatigue life of the blade are calculated, and the results indicate a longer fatigue life with slower damage accumulation rate in the early life stage.  相似文献   

18.
In this paper, based on the process of the fatigue crack initiation and the critical plane theory, a continuous stress parameter was proposed to quantify the driving force of the fatigue crack initiation for the fully reversed multiaxial fatigue loading. In this stress parameter, the shear stress amplitude and normal stress amplitude on the critical plane were combined with the variable coefficients which were affected by the normalized fatigue life and the loading non‐proportionality. Owing to these coefficients, for the multiaxial loadings with different non‐proportionalities, the driving force of the fatigue crack initiation during the whole life could be described. After that, a novel accumulative fatigue damage model was established for the multiaxial two‐stage step spectrum. In this model, the accumulative damage was calculated according to the variation of the proposed stress parameter on the critical plane. Considering the directionality of the multiaxial fatigue damage, for the spectrum in which the loading path was variable, the damage accumulation was carried out on the critical planes of the both loadings, and the larger one was chosen as the final accumulative fatigue damage. In order to verify the new model, up to 41 different multiaxial two‐stage step spectrum loading tests on 2024‐T4 aluminium alloy were collected. The new model, as well as other five commonly used models, was applied to calculate the accumulative fatigue damage. The final results showed that, compared with other commonly used models, the new model had the most accurate results with the smallest scatters.  相似文献   

19.
A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.  相似文献   

20.
Structural components are generally subjected to a wide stress spectrum over their lifetime. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. When there is a critical level of multiple site damage at connections, cracks link up to form a large crack which abruptly reduces the residual strength of the damaged structural member. Therefore, it is important to estimate the fatigue life before the cracks link up due to critical multiple site damage. In this study, the extended finite element method was applied to predict lifetime under constant amplitude cyclic loadings of fatigue tests on several multiple site damage specimens made of Al 2024‐T3. Then the multiple crack growths under service stress spectra are calculated to investigate the effects of compressive stress, stress orders and the effect of sequence cyclic loadings on stress levels by using Forman and NASGROW equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号