首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range).  相似文献   

2.
In this paper, a modification of the UniGrow model is proposed to predict total fatigue life with the presence of a short fatigue crack by incorporating short crack propagation into the UniGrow crack growth model. The UniGrow model is modified by 2 different methods, namely the “short crack stress intensity correction method” and the “short crack data‐fitting method” to estimate the total fatigue life including both short and long fatigue crack propagations. Predicted fatigue lives obtained from these 2 methods were compared with experimental data sets of 2024‐T3, 7075‐T56 aluminium alloys, and Ti‐6Al‐4V titanium alloy. Two proposed methods have shown good fatigue life predictions at relatively high maximum stresses; however, they provide conservative fatigue life predictions at lower stresses corresponding high cycle fatigue lives where short crack behaviour dominates total fatigue life at lower stress levels.  相似文献   

3.
Friction stir welding of titanium holds the promise for producing joints with microstructures and mechanical properties that are more comparable to wrought material than traditional fusion welding processes. Extensive data exist on the microstructure and static mechanical properties of titanium friction stir welds, but very little are available on the durability (fatigue) and even less on the damage tolerance (fracture toughness and fatigue crack growth). This paper presents the results of an investigation into the damage tolerance of friction stir welds made in 6 mm thick Ti‐6Al‐4V after a post‐weld heat treatment. It was found that the apparent fracture toughness was lower than the wrought base material, 7–25% depending on the crack orientation relative to the weld, but the crack growth performance (ΔK vs. da/dN) of the weld in the absence of weld‐induced residual stresses was identical to the base material.  相似文献   

4.
The fatigue crack growth properties of friction stir welded joints of 2024‐T3 aluminium alloy have been studied under constant load amplitude (increasing‐ΔK), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ΔK values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non‐conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non‐conservative crack growth rate predictions next to KC instability. At threshold ΔK values non‐conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.  相似文献   

5.
This paper proposes a low‐cost method for predicting probabilistic high‐cycle fatigue life for Al 2024‐T3 based on continuum damage mechanics and non‐intrusive polynomial chaos (NIPC). To randomize Lemaitre's two scale fatigue damage model, parameters S and s are regarded as random variables. Based on small sample of test life, inverse analysis is performed to obtain samples of the two parameters. Statistic characteristics of the two parameters are calculated analytically through coefficients of NIPC. Fatigue test of aluminum alloy 2024‐T3 standard coupon and plate with hole under different spectrum loading shows that the proposed method is effective.  相似文献   

6.
In this paper, a modified nonlinear damage accumulation model is proposed by using intrinsic crack size as the damage variable in the stress‐control condition. The model's development is based on the Chaboche nonlinear damage law and the short‐crack theory. The validations are confirmed by using the experimental data of Ti–6Al–4V and 2024‐T3 collected from tests and literature. The model capabilities of predicting damage accumulation and crack growth rate in the multi‐level loading condition as well as the variable amplitude loading condition with single and multiple over‐load are investigated and discussed in detail. Comparison results show that the proposed model is able to consider the loading ratio, the loading sequence and the over‐load effect on damage accumulation correctly. Meanwhile, the damage accumulation in the last stage of fatigue life can be described more clearly by the proposed model attributed to the use of crack size as the damage variable.  相似文献   

7.
Three‐dimensional finite element simulations were performed to study the growth of microstructurally small fatigue cracks in aluminium alloy 7075‐T651. Fatigue crack propagation through five different crystallographic orientations was simulated using crystal plasticity theory, and plasticity‐induced crack opening stresses were calculated. The computed crack opening stresses were used to construct small crack da/dN‐ΔK diagrams. The generated da/dN‐ΔK curves compared well with experimental small crack data from the literature. The variance observed among the da/dN‐ΔK results, which occurred as a consequence of the different crystallographic orientations employed, was found to be of the same order of magnitude as commonly observed variability in small fatigue crack growth data. This suggests that grain orientation is a major contributor to observed small fatigue crack data scatter.  相似文献   

8.
通过对 GH33A 合金在蠕变与疲劳复合加载条件下的系列试验,发现拉伸保时使蠕变与疲劳发生了交互作用,加快了疲劳裂纹扩展速率,加速裂纹早期进入失稳扩展,大大降低了疲劳寿命。GH33A 合金具有良好的抗蠕变裂纹扩展能力,但疲劳裂纹扩展阻力较低。由此讨论了拉伸保时对裂纹扩展的影响,并对在蠕变-疲劳交互作用下的裂纹扩展模型作了探讨。  相似文献   

9.
Procedure for the determination of the complete R‐dependency of the crack growth behaviour with only one specimen A new concept for fatigue crack propagation tests has been developed. Using a single specimen, it is possible to determine fatigue crack growth curves (da/dN ‐ ΔK) for every stress ratio between R = 0.9 and R = ‐1. Additionally, the new concept also provides threshold values for fatigue crack growth for different values of R and Kmax. In combination with a continuous crack length measurement tool (such as the DC potential drop method) this testing procedure can be performed with minimal effort of personnel and time. The test procedure consists of a sequence of Kmax‐constant tests with decreasing crack growth rates. As the applied Kmax is increasing stepwise there should be no load history effects. According to the procedures described in the ASTM Standard E 647, the results using this new testing procedure fit very well to the da/dN ‐ ΔK curves generated with different specimens. The tests also fulfil all the requirements of ASTM Standard E 647.  相似文献   

10.
To clarify vacuum effects on fatigue crack growth in freestanding metallic thin films, experiments were conducted on approximately 500‐nm‐thick copper films inside a field emission scanning electron microscope. Fatigue crack growth accompanied by intrusion/extrusion formation occurred in vacuum, and da/dN was smaller than in air in the middle‐ΔK region (ΔK ≈ 1.7‐3.1 MPam1/2). Conversely, in the low‐ΔK region (ΔK ? 1.7 MPam1/2), da/dN was larger in vacuum than in air. Further, fatigue crack growth in vacuum occurred below the fatigue threshold in air (ΔKth,air). A nonpropagating crack after reaching ΔKth,air continued to propagate in vacuum when the environment changed from air to vacuum. This indicates that fatigue crack growth resistance is smaller in vacuum than in air under the same effective driving force. The fatigue damage area near the crack paths in vacuum in the low‐ΔK region became wider, suggesting that the nucleation of fatigue damage was enhanced in vacuum.  相似文献   

11.
12.
Crack propagation rate, da/dN, and crack tip closure stress, σcc, in part-through crack fatigue specimens of aluminum alloys are drastically affected by gaseous environments. The present studies indicate that the crack closure reflects the influence of the environment on the plastic deformation at the crack tip, and, therefore, on the crack propagation rates. Postulating that da/dN is mainly determined by ΔKeff ∝ (σmaxcc) (instead of ΔK ∝ (σmaxmin), as is done traditionally) leads to the relationship da/dN = A(ΔKeff)n in which A and n are virtually independent of the gaseous environment. The exponents are n ≈ 3.3 for Al 7075 T651 and n ≈ 3.1 for Al 2024 T351, respectively.  相似文献   

13.
Crack growth data for 1–4 ply adhesive bonded 0.1 in. sheets of 2024-T81 aluminum has been generated. This data is presented in the form of crack growth rate (da/dN) at a given crack length and constant load level. In each case the crack was in the outer layer of the laminate. Each ply was strain gaged on both edges to indicate any induced bending. The purpose of this report is to present an approach which will utilize the experimental data to account for load transfer between plies and bending induced by unsymmetric crack growth. Then the effective remote stresses in the cracked ply and stress intensities for these finite width (4 in.) specimens will be calculated.From this da/dN vs ΔK data, certain assumptions will be made to allow for a multi-layer crack growth correction factor to be formulated which can be applied to other materials and laminate thicknesses.  相似文献   

14.
This paper investigates the tensile and fatigue properties of a newly developed fibre metal laminate (FML) manufactured using the vacuum assisted resin transfer moulding (VARTM) method. This manufacturing method allows the glass fibre reinforced epoxy and 2024‐T3 aluminium FML to be prepared at lower cost than conventionally manufactured FMLs. However, in order for the resin to infiltrate the FML, the metal sheets need to be perforated. These perforation holes act as crack initiators and reduce the FML's performance. Tension and fatigue test results of three different designs are reported and compared to mechanical property predictions. Additionally, single sheet Al alloy specimens were tested in order to analyse the influence of the drilling method.  相似文献   

15.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

16.
Retardation in fatigue crack growth rate following the application of single and periodic tensile overloads was studied for 2024‐T3 and 7075‐T6 aluminium alloys. Tests were performed at constant stress and at constant stress intensity factor ranges, at a load ratio of R= 0.1, at a baseline ΔK in the 10–20 MPa√m range which corresponds to the Paris regime. Overload ratios of 1.3–1.65 were studied with overload spacing, n, varying from 20 to 10 000 cycles. 2024‐T3 displayed an order of magnitude higher retardation, Nd, due to single tensile overloads compared to 7075‐T6. Periodic overloads induced maximum retardation when n/Nd≈ 0.5 for both alloys, the magnitude being only 15% higher for 2024‐T3.  相似文献   

17.
This paper discusses the relationship between striation spacing, i.e., the microscopic crack propagation rate, as measured in postmortem fractographic inspection of fatigue fractured surfaces, and the macroscopic crack propagation rate, i.e., da/dN, as monitored during fatigue crack growth tests. Compact tensile specimens C(T) in prevalent plane-strain conditions were extracted in LT orientation from the center of a 2-in. thick rolled plate of a SAE-AMS 7475-T7351 Al alloy. Testpieces were fatigue tested according to ASTM-E647 standard, at room temperature in a servo-hydraulic closed-loop MTS testing machine operating with the unloading elastic compliance technique. da/dN-ΔK data points were collected in the Paris’ law validity region, with crack growth rates typically ranging from 0.18 to 2.02 μm/cycle. Topographical survey was conducted on the test specimen fracture surfaces in a scanning electronic microscope in order to determine striation spacing created during the fatigue test. Macro- and micro-crack growth rates were compared and good correlation have been obtained for the data within the range of ΔK assessed in the study. Results of crack growth rates have been quantitatively evaluated in terms of fatigue life estimation.  相似文献   

18.
The microstructural features and the fatigue propensities of interior crack initiation region for very‐high‐cycle fatigue (VHCF) of a Ti–6Al–4V alloy were investigated in this paper. Fatigue tests under different stress ratios of R = ?1, ?0.5, ?0.1, 0.1 and 0.5 were conducted by ultrasonic axial cycling. The observations by SEM showed that the crack initiation of VHCF presents a fish‐eye (FiE) morphology containing a rough area (RA), and the FiE and RA are regarded as the characteristic regions for crack initiation of VHCF. Further examinations by TEM revealed that a layer of nanograins exists in the RA for the case of R = ?1, while nanograins do not appear in the FiE outside RA for the case of R = ?1, and in the RA for the case of R = 0.5, which is explained by the Numerous Cyclic Pressing model. In addition, the estimations of the fatigue propensities for interior crack initiation stage of VHCF indicated that the fatigue life consumed by RA takes a dominant part of the total fatigue life and the related crack propagation rate is rather slow.  相似文献   

19.
Abstract

Recrystallised and unrecrystallised Al–Li–Cu–Mg–Zr alloy 8090 sheet and Al–Cu alloy 2024 sheet have been tested to determine their relative resistance to creep cracking. Creep cracking in recrystallised 8090 sheet occurred at much lower stress intensity factors K, at higher rates for a given value of K, and at lower temperatures, compared with unrecrystallised 8090 or 2024 sheet. For recrystallised sheet, significant rates of creep cracking were observed at temperatures as low as 60°C, at K values of ~10%Kc (the critical value of K for overload fracture). Creep crack growth was predominantly intergranular for recrystallised 8090 and 2024 sheet, and a mixture of intersubgranular and transgranular for unrecrystallised 8090 sheet. The fractographic features, as well as other observations, suggest that 8090 alloys contain low melting point sodium-rich phases which are not found in conventional alloys. It was concluded that the presence of these phases and the continuous, intergranular crack paths approximately normal to the applied stress in recrystallised 8090 sheet were responsible for its poor resistance to creep cracking.

MST/1482  相似文献   

20.
This paper presents the investigation on fatigue crack growth behaviour of Al–Zn and Al–Zn–Ce alloys. Fatigue tests were carried out on as‐cast and heat‐treated CT specimens according to ASTM E647 testing standard. The test results showed that the addition of rare earth element (cerium) and heat treatments (T6 and T5) had very strong influence on fatigue strength. This enhancement was due to metallurgical changes in the alloy system. Cerium eliminates the porosities and refines microstructures of the alloy, showing the improved fatigue crack growth behaviour. In addition, the fatigue fractured specimens were examined using a scanning electron microscope to clarify the fracture initiation points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号