首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene glycol (PEG) gel was used to immobilize hydrogen producing Clostridium LS2 bacteria for hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor with a PEG-immobilized cell packing ratio of 10% weight to volume ratio (w/v) was optimal for dark hydrogen production. The performance of the UASB reactor fed with palm oil mill effluent (POME) as a carbon source was examined under various hydraulic retention time (HRT) and POME concentration. The best volumetric hydrogen production rate of 365 mL H2/L/h (or 16.2 mmol/L/h) with a hydrogen yield of 0.38 L H2/g CODadded was obtained at POME concentration of 30 g COD/L and HRT of 16 h. The average hydrogen content of biogas and COD reduction were 68% and 65%, respectively. The primary soluble metabolites were butyric acid and acetic acid with smaller quantities of other volatile fatty acid and alcohols formed during hydrogen fermentation. More importantly, the feasibility of PEG-immobilized cell UASB reactor for the enhancement of the dark-hydrogen production and treatment of wastewater is demonstrated.  相似文献   

2.
针对目前厨余连续流发酵产氢处理负荷不高、产氢率较低的难题,采用UASB反应器进行厨余发酵产氢研究。在温度为30℃,进水COD浓度为2 000~10 000 mg/L,水力停留时间为2~6 h条件下,产氢速率最大达到17.04 L/(L.d)。反应器内有颗粒污泥的形成,平均生物量达到6.17 g/L,为氢气的产生提供了有利保障。当出水pH为4.2~4.4,碱度为260~340 mg/L的条件下,乙醇和乙酸占挥发酸总量的89.2%,形成稳定的乙醇型发酵类型,反应器最高处理负荷COD达到60 kg/(m3.d)。试验结果表明,UASB反应器具有更高的产氢效能和更加稳定的产氢效果,能够为厨余发酵产氢提供有利的保障。  相似文献   

3.
Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp.A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3–24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H2/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess.  相似文献   

4.
Hydrogen (H2) production from cheese processing wastewater via dark anaerobic fermentation was conducted using mixed microbial communities under thermophilic conditions. The effects of varying hydraulic retention time (HRT: 1, 2 and 3.5 days) and especially high organic load rates (OLR: 21, 35 and 47 g chemical oxygen demand (COD)/l/day) on biohydrogen production in a continuous stirred tank reactor were investigated. The biogas contained 5–82% (45% on average) hydrogen and the hydrogen production rate ranged from 0.3 to 7.9 l H2/l/day (2.5 l/l/day on average). H2 yields of 22, 15 and 5 mmol/g COD (at a constant influent COD of 40 g/l) were achieved at HRT values of 3.5, 2, and 1 days, respectively. On the other hand, H2 yields were monitored to be 3, 9 and 6 mmol/g COD, for OLR values of 47, 35 and 21 g COD/l/day, when HRT was kept constant at 1 day. The total measurable volatile fatty acid concentration in the effluent (as a function of influent COD) ranged between 118 and 27,012 mg/l, which was mainly composed of acetic acid, iso-butyric acid, butyric acid, propionic acid, formate and lactate. Ethanol and acetone production was also monitored from time to time.To characterize the microbial community in the bioreactor at different HRTs, DNA in mixed liquor samples was extracted immediately for PCR amplification of 16S RNA gene using eubacterial primers corresponding to 8F and 518R. The PCR product was cloned and subjected to DNA sequencing. The sequencing results were analyzed by using MegaBlast available on NCBI website which showed 99% identity to uncultured Thermoanaerobacteriaceae bacterium.  相似文献   

5.
The production of biohydrogen from industrial wastewater through the dark fermentation (DF) process has attracted increased interest in recent years. To implement a DF process on a large scale, a thorough knowledge of laboratory scale process control is required. The operating parameters and design features of the reactors have a great influence on the efficiency of the process. In this work, the possibility of continuous production of biohydrogen from confectionery wastewater was evaluated. The DF process was carried out at 37 ± 1 °C in two different reactors: an upflow anaerobic filter (AF) and a fluidized bed reactor (AFB). Polyurethane foam (PU) was used to immobilize the biomass. The DF process was studied at four hydraulic retention times (HRT) (1.5, 2.5, 7.5 and 15 days) and the corresponding organic loading rates (OLR) (9.21, 6.12, 2.04 and 1.02 g CODinit/(L day)). The highest hydrogen yield (HY) (44.73 ml/g CODinit) and hydrogen production rate (HPR) (92.5 ml/(L day)) was observed in AFB at HRT of 7.5 days and 2.5 days, respectively. The highest concentration of hydrogen in biogas was 34% in AF and 36% in AFB at HRT of 7.5 days. In contrast to AF, the COD removal efficiency in AFB increased with increasing HRT. The pH of the effluent was low (3.95–4.38). However, due to the use of PU for biomass immobilization, it is possible that there were local zones in the reactor that were optimal for the functioning of not only acidogens, but also methanogens. This was evidenced by a rather high content of methane in biogas (2.5% in AF and 9.6% in AFB at HRT of 15 days). These results provide valuable data for optimizing the continuous DF of wastewater from confectionery and other food industries to produce biohydrogen or biohythane.  相似文献   

6.
This study evaluated hydrogen production and chemical oxygen demand removal (COD removal) from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). The ABR was conducted based on the optimum condition obtained from the batch experiment, i.e. 2.25 g/L of FeSO4 and initial pH of 9.0. The effects of the varying hydraulic retention times (HRT: 24, 18, 12, 6 and 3 h) on hydrogen production and COD removal in a continuous ABR were operated at room temperature (32.3 ± 1.5 °C). Hydrogen production rate (HPR) increased with a reduction in HRT i.e. from 164.45 ± 4.14 mL H2/L.d (24 h HRT) to 883.19 ± 7.89 mL H2/L.d (6 h HRT) then decreased to 748.54 ± 13.84 mL H2/L.d (3 h HRT). COD removal increased with reduction in HRT i.e. from 14.02 ± 0.58% (24 h HRT) to 29.30 ± 0.84% (6 h HRT) then decreased to 21.97 ± 0.94% (3 h HRT). HRT of 6 h was the optimum condition for ABR operation as indicated.  相似文献   

7.
The objective of this study was to investigate the enhancement of hydrogen production from alcohol wastewater by adding fermentation residue using an anaerobic sequencing batch reactor (ASBR) under thermophillic operation (55 °C) and at a constant pH of 5.5. The digestibility of the added fermentation residue was also evaluated. For a first set of previous experiments, the ASBR system was operated to obtain an optimum COD loading rate of 50.6 kg/m3 d of alcohol wastewater without added fermentation residue and the produced gas contained 31% H2 and 69% CO2. In this experiment, the effect of added fermentation residue (100–1200 mg/l) on hydrogen production performance was investigated under a COD loading rate of 50.6 kg/m3 d of the alcohol wastewater. At a fermentation residue concentration of 1000 mg/l, the produced gas contained 40% H2 and 60% CO2 without methane and the system gave the highest hydrogen yield and specific hydrogen production rate of 128 ml/g COD removed and 2880 ml/l d, respectively. Under thermophilic operation with a high total COD loading rate (51.8 kg/m3 d) and a short HRT (21 h) at pH 5.5, the ASBR system could only break down cellulose (41.6%) and hemicellulose (21.8%), not decompose lignin.  相似文献   

8.
Biohydrogen production with fixed-bed bioreactors   总被引:3,自引:0,他引:3  
An investigation on anaerobic hydrogen production was conducted in fixed-bed bioreactors containing hydrogen-producing bacteria originated from domestic sewage sludge. Three porous materials, loofah sponge (LS), expanded clay (EC) and activated carbon (AC), were used as the support matrix to allow retention of the hydrogen-producing bacteria within the fixed-bed bioreactors. The carriers were assessed for their effectiveness in biofilm formation and hydrogen production in batch and continuous modes. It was found that LS was inefficient for biomass immobilization, while EC and AC exhibited better biomass yields. The fixed-bed reactors packed with EC or AC (denote as EC or AC reactors) were thus used for continuous hydrogen fermentation at a hydraulic retention time (HRT) of 0.5–5 h. Sucrose was utilized as the major carbon source. With a sucrose concentration of ca. 20 g COD/l in the feed, the EC reactor (workingvolume=300 ml) was able to produce H2 at an optimal rate of 0.415 l/h/l at HRT=2 h. In contrast, the AC reactor (300 ml in volume) exhibited a better hydrogen production rate of 1.32 l/h/l, which occurred at HRT=1 h. When the AC reactor was scaled up to 3 l, the hydrogen production rate was nearly 0.53–0.68 l/h/l for HRT=1–3 h, but after a short thermal treatment (75°C, 1 h) the rate rose to ca. 1.21 l/h/l at HRT=1 h. The biogas produced with EC and AC reactors typically contained 25–35% of H2 and the rest was mainly CO2, while production of methane was negligible (less than 0.1%). During the efficient hydrogen production stage, the major soluble metabolite was butyric acid, followed by propionic acid, acetic acid, and ethanol.  相似文献   

9.
An anaerobic sequencing batch reactor (ASBR) was used to evaluate biological hydrogen production from carbohydrate-rich organic wastes. The goal of the proposed project was to investigate the effects of pH (4.9, 5.5, 6.1, and 6.7), and cyclic duration (4, 6, and 8 h) on hydrogen production. With the ASBR operated at 16-h HRT, 25 g COD/L, and 4-h cyclic duration, the results showed that the maximum hydrogen yield of 2.53 mol H2/mol sucroseconsumed appeared at pH 4.9. The carbohydrate removal efficiency declined to 56% at pH 4.9, which indirectly resulted in the reduction of total volatile fatty acid production. Acetate fermentation was the dominant metabolic pathway at pH 4.9. The concentration of mixed liquor volatile suspended solid (MLVSS) also showed a decrease from nearly 15,000 mg/L between pHs 6.1 and 6.7 to 6000 mg/L at pH 4.9. Investigation of the effect of cyclic duration found that hydrogen yield reached the maximum of 1.86 mol H2/mol sucroseconsumed at 4-h cyclic duration while ASBR was operating at 16-h HRT, 15 g COD/L, and pH 4.9. The experimental results showed that MLVSS concentration increased from 6200 mg/L at 4-h cyclic duration to 8500 mg/L at 8-h cyclic duration. However, there was no significant change in effluent volatile suspended solid concentration. The results of butyrate to acetate ratio showed that using this ratio to correlate the performance of hydrogen production is not appropriate due to the growth of homoacetogens. In ASBR, the operation is subject to four different phases of each cycle, and only the complete mix condition can be achieved at react phase. The pH and cyclic duration under the unique operations profoundly impact fermentative hydrogen production.  相似文献   

10.
The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 °C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l−1 d−1 gave a maximum hydrogen yield of 0.27 l H2 g COD−1 with a volumetric hydrogen production rate of 9.1 l H2 l−1 d−1 (16.9 mmol l−1 h−1). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 ± 3.5%, 92 ± 3%, 57 ± 2.5% and 78 ± 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l−1 d−1) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME).  相似文献   

11.
In this study, a new process was proposed to enhance the stability and efficiency of an anaerobic baffled reactor (ABR). The process was examined in a four equal compartments ABR with total volume of 3.46 L. The first compartment was operated for fermentative hydrogen production and the last three compartments were used as continuous singer chamber microbial electrolysis cells (MECs) for methanogenesis. The system was operated at 35 ± 1 °C and hydraulic retention time (HRT) of 24 h with influent chemical oxygen demand (COD) concentration of 3500 mg/L–4000 mg/L. The results indicated that the proportion of hydrogen in the first compartment was 20.7% and proportions of methane in the last three compartments were 98.0%, 93.6% and 70.1%, respectively. A total of 98.0% of COD removal rate was achieved as well. Hence, this new system has following advantages: hydrogen production with cleaner effluent, high COD removal rate, and net methane production for practical use.  相似文献   

12.
A few studies have been made on fermentative hydrogen production from marine algae, despite of their advantages compared with other biomass substrates. In this study, fermentative hydrogen production from Laminaria japonica (one brown algae species) was investigated under mesophilic condition (35 ± 1 °C) without any pretreatment method. A feasibility test was first conducted through a series of batch cultivations, and 0.92 mol H2/mol hexoseadded, or 71.4 ml H2/g TS of hydrogen yield was achieved at a substrate concentration of 20 g COD/L (based on carbohydrate), initial pH of 7.5, and cultivation pH of 5.5. Continuous operation for a period of 80 days was then carried out using anaerobic sequencing batch reactor (ASBR) with a hydraulic retention time (HRT) of 6 days. After operation for approximately 30 days, a stable hydrogen yield of 0.79 ± 0.03 mol H2/mol hexoseadded was obtained. To optimize bioenergy recovery from L. japonica, an up-flow anaerobic sludge blanket reactor (UASBr) was applied to treat hydrogen fermentation effluent (HFE) for methane production. A maximum methane yield of 309 ± 12 ml CH4/g COD was achieved during the 90 days operation period, where the organic loading rate (OLR) was 3.5 g COD/L/d.  相似文献   

13.
Anaerobic fermentation by microorganisms is a promising method of hydrogen production for it can be conducted at mild conditions. In this paper, a series of tests were carried out to investigate the effect of pH, hydraulic retention time (HRT), temperature (T) and substrate concentration on anaerobic dark fermentation. Glucose was utilized as model substrate. The Taguchi orthogonal array was applied in the experimental design and a verification experiment was tested. The results showed the optimal parameters for hydrogen production were pH 5.0, HRT 8.34 h, T 33.5 °C and substrate concentration of 14 g/L, with hydrogen yield of 2.15 mol H2/mol glucose. Butyric-type fermentation occurred in most tests. According to the analysis of effluent contents, at pH 5.5, 5.0, 4.0, the effluent contained mostly butyric acid (43.1–56.6%), followed by acetic acid (24.6–29.8%); at HRT 4.17, 6.26, 8.34 h, the effluent contained mostly butyric acid (43.0–53.6%). Increasing temperature from 29 to 39.5 °C resulted in the decrease of butyric acid percentage but increase of ethanol percentage. Substrate concentration had little effect on product constitution.  相似文献   

14.
Purified terephthalic acid (PTA) processing wastewater was evaluated as a fermentable substrate for hydrogen (H2) production with simultaneous wastewater treatment by dark-fermentation process in a continuous stirred-tank reactor (CSTR) with selectively enriched acidogenic mixed consortia under continuous flow condition in this paper. The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. Under the conditions of the inoculants not less than 6.3 gVSS/L, the organic loading rate (OLR) of 16 kgCOD/m3 d, hydraulic retention time (HRT) of 6 h and temperature of (35 ± 1) °C, when the pH value, alkalinity and oxidation–reduction potential (ORP) of the effluent ranged from 4.2 to 4.4, 280 to 350 mg CaCO3/L, and −220 to −250 mV respectively, soluble metabolites were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 70.31% to the total liquid products after 25 days operation. The H2 volume content was estimated to be 48–53% of the total biogas and the biogas was free of methane throughout the study. The average biomass concentration was estimated to be 10.82 gVSS/L, which favored H2 production efficiently. The rate of chemical oxygen demand (COD) removal reached at about 45% and a specific H2 production rate achieved 0.073 L/gMLVSS d in the study. This CSTR system showed a promising high-efficient bioprocess for H2 production from high-strength chemical wastewater.  相似文献   

15.
This study aims to investigate the effect of substrate concentration and hydraulic retention time (HRT) on hydrogen production in a continuous anaerobic bioreactor from unhydrolyzed common reed (Phragmites australis) an invasive wetland and perennial grass. The bioreactor has capacity of 1 L and working volume of 600 mL. It was operated at pH 5.5, temperature at 37 °C, hydraulic retention time (HRT) 12 h, and variation of substrate concentration from 40, 50, and 60 g COD/L, respectively. Afterward, the HRT was then varied from 12, 8, to 4 h for checking the optimal biohydrogen production. Each condition was run until reach steady state on hydrogen production rate (HPR) which based on hydrogen percentage and daily volume. The results were obtained the peak of substrate concentration was at the 50 g COD/L with HRT 12 h, average HPR and H2 concentration were 28.71 mL/L/h and 36.29%, respectively. The hydrogen yield was achieved at 106.23 mL H2/g CODre. The substrate concentration was controlled at 50 g COD/L for the optimal HRT experiments. It was found that the maximum of average HPR and H2 concentration were 43.28 mL/L/h and 36.96%, respectively peak at HRT 8 h with the corresponding hydrogen yield of 144.35 mL H2/g CODre. Finally, this study successful produce hydrogen from unhydrolyzed common reed by enriched mixed culture in continuous anaerobic bioreactor.  相似文献   

16.
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment.  相似文献   

17.
Two-stage hydrogen and methane production in extreme thermophilic (70 °C) conditions was demonstrated for the first time in UASB-reactor system. Inoculum used in hydrogen and methane reactors was granular sludge from mesophilic internal circulation reactor and was first acclimated for extreme thermophilic conditions. In hydrogen reactor, operated with hydraulic retention time (HRT) of 5 h and organic loading rate (OLR) of 25.1 kg COD/m3/d, hydrogen yield was 0.73 mol/mol glucoseadded. Methane was produced in second stage from hydrogen reactor effluent. In methane reactor operated with HRT of 13 h and OLR of 7.8 kg COD/m3/d, methane yield was 117.5 ml/g CODadded. These results prove that hydrogen and methane can be produced in extreme thermophilic temperatures, but as batch experiments confirmed, for methane production lower temperature would be more efficient.  相似文献   

18.
Biohydrogen is a promising candidate which can replace a part of our fossil fuels need in day-to-day life due its perceived environmental benefits and availability through dark fermentation of organic substrates. Moreover, advances in biohydrogen production technologies based on organic wastewater conversion could solve the issues related to food security, climate change, energy security and clean development in the future. An evaluation of studies reported on biohydrogen production from different wastewaters will be of immense importance in economizing production technologies. Here we have reviewed biohydrogen production yields and rates from different wastewaters using sludges and microbial consortiums and evaluated the feasibility of biohydrogen production from unexplored wastewaters and development of integrated bioenergy process. Biohydrogen production has been observed in the range of substrate concentration 0.25–160 g COD/L, pH 4–8, temperature 23–60 °C, HRT 0.5–72 h with various types of reactor configuration. The most efficient hydrogen production has been obtained at an organic loading rate (OLR) 320 g COD/L/d, substrate concentration 40 g COD/L, HRT 3 h, pH 5.5–6.0, temperature 35 °C in a continuously-stirred tank reactor system using mixed cultures and fed with condensed molasses fermentation soluble wastewater. The net energy efficiency analysis showed vinasse wastewater has the highest positive net energy gain followed by glycerin wastewater and domestic sewage as 140.39, 68.65, 51.84 kJ/g COD feedstock with the hydrogen yield (HY) of 10 mmol/g COD respectively.  相似文献   

19.
The green energy sustainable house based on bio-hydrogen and bio-methane energy technologies proposed in this study employs dark fermentation technology to complete a scheme for green energy sustainable house that includes energy production, storage, distribution control, load applications, recycling, waste treatment, and reuse. In order to resolve the problem of wastewater discharge from hydrogen production in green energy sustainable houses, this study proposes wastewater chemical oxygen demand (COD) treatment research, and suggests the use of two-stage anaerobic treatment to produce two types of bio-energy i.e. hydrogen and methane, while simultaneously reducing COD levels.Methane production employed a condensed molasses fermentation solubles (CMS) and hydrogen fermentation tank effluent as a substrate to test the COD reducing efficiency and overall efficiency of methane production. It was found that if CMS is used during the hydrolysis and acidogenesis stages, the maximum carbohydrate degradation rate will be approximately 70% (F/M ratio of 1.9-2.3), and the COD removal rate will increase from 15 to 20% (F/M ratio of 1.9-2.3) to 68% (F/M ratio of 0.5). This study showed that the total gas (H2 and CH4) production yield from effluent of hydrogen fermentation tank (56.2 KJ/mol substrate) is greater than the value for CMS.In this study, a 3.2 m3 anaerobic hydrogen reactor is evaluated to provide a family with 3-4 kW of power. When acclimatization is performed under conditions of 20 g COD/L substrate and hydraulic retention time (HRT) of 8 h, the COD removal rate can reach approximately 50%. If a methane-generating reactor with a 95% COD removal rate is used to degrade effluent from the hydrogen reaction tank, it will be possible to reduce the COD of organic effluent to under 500 mg/L. Since this water quality is not far from that of ordinary untreated household wastewater (approximately 300-500 mg COD/L), the effluent can be discharged into a community sewer system and treated in a community sewage treatment facility.  相似文献   

20.
The present study was aimed to treat the dairy wastewater by using anaerobic and solar photocatalytic oxidation methods. The anaerobic treatment was carried out in a laboratory scale hybrid upflow anaerobic sludge blanket reactor (HUASB) with a working volume of 5.9 L. It was operated at organic loading rate (OLR) varying from 8 to 20 kg COD/m3 day for a period of 110 days. The maximum loading rate of the anaerobic reactor was found to be 19.2 kg COD/m3 day and the corresponding chemical oxygen demand (COD) removal at this OLR was 84%. The anaerobically treated wastewater at an OLR of 19.2 kg COD/m3 day was subjected to secondary solar photocatalytic oxidation treatment. The optimum pH and catalyst loading for the solar photochemical oxidation was found to be 5 and 300 mg/L, respectively. The secondary solar photocatalytic oxidation using TiO2 removed 62% of the COD from primary anaerobic treatment. Integration of anaerobic and solar photocatalytic treatment resulted in 95% removal of COD from the dairy wastewater. The findings suggest that anaerobic treatment followed by solar photo catalytic oxidation would be a promising alternative for the treatment of dairy wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号