首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前,超分辨率重建技术广泛应用于医学图像、遥感图像等领域。材料科学等学科研究中,落管是提供微重力的设备,基于落管的深过冷熔体是笔者的研究对象。材料方面,研究人员需要观测实验过程中目标材料的形态结构等特征,但受限于硬件环境,仅能得到数量庞大的低分辨率序列图像。基于此问题,引入VESPCN(VideoEfficient Sub-pixelConvolutionalNeuralNetwork)多帧图像超分辨率重建算法,成功构建深过冷熔体的高清图像,且基于PSNR(Peak Signal to Noise Ratio)和SSIM(Structural Similarity Measure)指标,提高了重建效果。  相似文献   

2.
单幅图像超分辨率重建技术研究进展   总被引:1,自引:0,他引:1  
张芳  赵东旭  肖志涛  耿磊  吴骏  刘彦北 《自动化学报》2022,48(11):2634-2654
图像分辨率是衡量一幅图像质量的重要标准. 在军事、医学和安防等领域, 高分辨率图像是专业人士分析问题并做出准确判断的前提. 根据成像采集设备、退化因素等条件对低分辨率图像进行超分辨率重建成为一个既具有研究价值又极具挑战性的难点问题. 首先简述了图像超分辨率重建的概念、重建思想和方法分类; 然后重点分析用于单幅图像超分辨率重建的空域方法, 梳理基于插值和基于学习两大类重建方法中的代表性算法及其特点; 之后结合用于超分辨率重建技术的数据集, 重点分析比较了传统超分辨率重建方法和基于深度学习的典型超分辨率重建方法的性能; 最后对图像超分辨率重建未来的发展趋势进行展望.  相似文献   

3.
马凤颖 《软件》2023,(11):121-123
图像超分辨率重建是计算机进行图像处理的底层任务,可以将低分辨率图像进行优化,生成高频细节的高分辨率图像。基于深度学习的图像超分辨率重建算法可以进一步提高重建图像质量与视觉效果,采用轻量化的超分辨率算法可以有效减少重建算法模型所需要的内存空间。本文采用深度学习技术中的基于卷积神经网络的图像超分辨率重建模型,提高图像分辨率,降低计算复杂度。  相似文献   

4.
针对基于字典学习的方法在处理含有噪声且环境复杂的矿井图像时重建效果不佳的问题,提出了一种基于在线多字典学习的矿井图像超分辨率重建方法。该方法利用K-means聚类算法将图像训练集划分为多类图像,并针对不同类图像训练多组高低分辨率字典,提高字典对环境复杂图像的特征表示能力;根据图像非局部自相似性,引入非局部约束项进一步约束稀疏系数的解空间,并通过在线字典学习对多字典学习阶段的字典进行优化,提高稀疏系数求解的准确性,从而提高图像重建过程的抗噪声干扰能力。实验结果表明,该方法能够有效提高重建图像质量,抑制噪声引起的图像块效应和边缘锯齿效应,增强图像细节,具有更好的视觉效果。  相似文献   

5.
提出一种针对正面人脸图像的超分辨率重建方法,通过学习人脸图像梯度的空间分布特性,获取梯度先验知识;通过结合贝叶斯最大后验概率估计理论,采用最速下降优化方法得到高分辨率人脸图像。实验结果表明,该方法在仅输入2—3幅低分辨率图像的情况下即可重建出具有较佳高频细节的超分辨率图像。  相似文献   

6.
针对FSRCNN模型中存在的特征提取不充分和反卷积带来的人工冗余信息的问题, 本文提出了一种基于多尺度融合卷积神经网络的图像超分辨率重建算法. 首先设计了一种多尺度融合的特征提取通道, 解决对图像不同尺寸信息利用不充分问题; 其次在图像重建部分, 采用子像素卷积进行上采样, 抑制反卷积层带来的人工冗余信息. 与FSRCNN模型相比, 在Set5和Set14数据集中, 2倍放大因子下的PSNR值和SSIM值平均提高了0.14 dB、0.001 0, 在3倍放大因子下平均提高0.48 dB、0.009 1. 实验结果表明, 本文算法可以更大程度的保留图像纹理细节, 提升图像整体重建效果.  相似文献   

7.
超分辨率图像重建方法研究   总被引:1,自引:0,他引:1  
超分辨率图像重建就是由低分辨率图像序列来估计高分辨率图像,已成为当前研究的热点。对超分辨率的概念和应用场合进行了阐述,对空域的几种主要重建方法进行了详尽分析与比较,并研究了压缩域中的重建方法,指出了各自的优点与不是。研究表明,超分辨率重建具有广泛的应用前景,其成像模型、运动估计、重建算法和实时实现将是今后研究的重点。  相似文献   

8.
针对目前提高图像分辨率的卷积神经网络存在的特征提取尺度单一以及梯度消失等问题,提出了多尺度残差网络的单幅图像超分辨率重建方法.采用多尺度特征提取和特征信息融合,解决了对图像细节特征提取不够充分的问题;将局部残差学习和全局残差学习相结合,提高了卷积神经网络信息流传播的效率,减轻了梯度消失现象.在Set5、Set14和BS...  相似文献   

9.
图像超分辨率重建旨在从低分辨率图像恢复出高分辨率清晰图像.阐述了典型图像超分辨率重建方法的思想,从上采样位置和上采样方法、学习策略、损失函数等维度,对典型和最新的基于深度学习的图像超分辨率重建算法进行了评述,分析了最新的发展现状,并对未来发展趋势进行了展望.  相似文献   

10.
图像超分辨率重建技术对于输入的低分辨率图像进行相关处理,从而重构出高分辨率图像,该技术已经成为图像处理研究领域的一个热点方向。对超分辨率图像重建的研究进展进行了综述。阐述了图像超分辨率重建的基本原理。对基于重建的图像超分辨重建中:IBP,POCS等算法,基于学习的图像超分辨率重建中:稀疏表示,基于深度神经网络等算法及一些相关改进的算法进行了综述。对图像超分辨率重建的研究提出了展望。  相似文献   

11.
图像超分辨率重建技术综述   总被引:2,自引:0,他引:2  
超分辨率(SR)重建技术是利用一幅或多幅低分辨率(LR)图像的信息重建出一幅高分辨率(HR)图像,同时能够消除由成像器件引入的模糊、噪声.该技术应用领域广泛,已经成为国内外图像处理领域的研究热点之一.介绍了超分辨率重建技术的基本原理,并分别以单帧和多帧、频域和空域为分类依据,分别阐述了超分辨率重建技术的经典方法,系统地总结了各种方法的优缺点,提出了超分辨率重建技术可能的研究方向,从而为超分辨率重建相关技术的进一步研究提供一定的理论基础.  相似文献   

12.
不断加深网络的深度可提高网络的超分辨率重建效果,但是网络的加深会导致网络参数量急速增加,难以进行网络训练和内存存储.为了减小深度网络的参数规模并尽量保持网络的重建性能,基于递归和多尺度的思想,文中提出精简的基于递归多尺度卷积网络的图像超分辨率重建方法.首先利用多尺度模块充分提取图像在不同尺度下的特征信息,再通过递归操作实现网络规模的加深而不增加网络的参数量,最后将每次递归操作的输出进行特征融合,作为高分辨率图像重建的输入.实验表明,文中方法在网络参数量较少时重建效果较优.  相似文献   

13.
基于仿生学角度采取冗余多源图像进行超分辨率重建,一方面多视角图像与深度图像有互补性,数学建模与融合算法的设计需要在实用中有重叠信息进行重建;另一方面建立相应的多源图像超分辨率重建的数学模型的优化求解提出一些新的思路,并且对并行优化快速算法进行了构思.  相似文献   

14.
对于目前图像超分辨率重建算法中的问题,忽略重建图像结构性和重建过程中丢失高频信息,提出了一种基于多字典的单幅图像超分辨率重建算法。在字典学习阶段根据每个图像块的主方向角,对所有训练图像块进行聚类并训练各类的字典。利用训练得到的字典重建训练样本并计算各类的残差图像块,然后对残差图像块再进行聚类、训练残差字典。用锚定邻域回归方法重建高分辨率图像,实验结果表明,该算法在客观评价和视觉效果上均优于许多优秀的图像超分辨算法。  相似文献   

15.
图像超分辨率重建技术一直是计算机视觉中一个十分受重视和关注的热点问题,在医疗、遥感、监控等领域都有着十分重要的研究价值.近年来,伴随着深度学习技术的蓬勃发展,图像超分辨率重建技术被广泛开始应用于更多计算机视觉的相关领域.本文首先梳理了图像超分辨率重建的发展与现状,然后对比总结了基于传统技术与基于深度学习技术的相同点与不...  相似文献   

16.
为深入了解基于深度学习的单图像超分辨率重建(SISR)的发展,把握当前研究的热点和方向,针对现有基于深度学习的单图像超分辨率重建模型进行了梳理。介绍了相关深度学习算法和基于深度学习的模型以及评价指标,并通过实验对比分析现有模型的性能,其目的在于从本质上了解基于深度学习的单图像超分辨率重建模型的优势;对单图像超分辨率重建的关键问题进行了总结,并对未来的发展趋势进行了展望。  相似文献   

17.
超分辨率图像重建方法综述   总被引:51,自引:7,他引:51  
苏衡  周杰  张志浩 《自动化学报》2013,39(8):1202-1213
由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction, SRIR 或 SR)技术成为计算机视觉与图像处理领域的一个研究热点, 引起了研究者的广泛关注. 本文 将超分辨率图像重建问题按照不同的输入输出情况进行系统分类, 将超分辨率问题分为基于重建的超分辨率、视频超分辨率、 单帧图像超分辨率三大类. 对于其中每一大类问题, 分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等 各种相关问题, 并对不同算法的特点进行了比较分析. 本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法, 最后给出了对这一领域未来发展的思考与展望.  相似文献   

18.
孙超文  陈晓 《自动化学报》2021,47(7):1689-1700
针对现有图像超分辨率重建方法恢复图像高频细节能力较弱、特征利用率不足的问题, 提出了一种多尺度特征融合反投影网络用于图像超分辨率重建. 该网络首先在浅层特征提取层使用多尺度的卷积核提取不同维度的特征信息, 增强跨通道信息融合能力; 然后,构建多尺度反投影模块通过递归学习执行特征映射, 提升网络的早期重建能力; 最后,将局部残差反馈结合全局残差学习促进特征的传播和利用, 从而融合不同深度的特征信息进行图像重建. 对图像进行×2 ~ ×8超分辨率的实验结果表明, 本方法的重建图像质量在主观感受和客观评价指标上均优于现有图像超分辨率重建方法, 超分辨率倍数大时重建性能相比更优秀.  相似文献   

19.
肖雅敏  张家晨  冯铁 《计算机工程》2021,47(2):293-299,306
基于卷积神经网络的单图像超分辨率模型网络结构过深,导致高频信息丢失以及模型体积庞大等问题.提出一种由多个残差模块构成的多窗口残差网络优化模型,通过使用多个不同尺寸的窗口对同一特征图进行提取,获取更丰富的高频与低频信息,并过滤出深层网络的所需特征.残差模块中较大尺寸的窗口采用较小尺寸的滤波器和多层映射层叠加组成,可在减少...  相似文献   

20.
多分辨率图像序列的超分辨率重建   总被引:1,自引:0,他引:1  
李展  张庆丰  孟小华  梁鹏  刘玉葆 《自动化学报》2012,38(11):1804-1814
针对不同焦距下拍摄的多分辨率尺度的图像序列,本文提出了一种基于尺度不变特征转换(Scale invariant feature transform, SIFT)和图像配准的超分辨率(Super resolution, SR)图像盲重建算法.首先提取图像SIFT特征点,然后用向量夹角余弦进行特征描述符向量的初匹配,并用随机抽样一致性 (Random sample consensus, RANSAC)算法消除误匹配提高配准精度.计算变换参数后,将低分辨率图像(Low-resolution, LR)像素点映射到高分辨率(How-resolution, HR)网格,最后利用像素可信度加权算法填充缺失像素值,重建更高分辨率的图像.实验表明, 本文算法能精确估计图像序列的缩放因子,可以有效处理仿射变换模型,对配准误差也具有一定的鲁棒性.算法从实质上提高了多分辨率尺度图像序列的分辨率,尤其在低分辨率帧数较少可用于重建的信息量严重不足时也能获得比较满意的重建效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号