首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the decomposition of methanol into the CO and H species on the Pd/tungsten carbide (WC)(0001) surface is systematically investigated using periodic density functional theory (DFT) calculations. The possible reaction pathways and intermediates are determined. The results reveal that saturated molecules, i.e., methanol and formaldehyde, adsorb weakly on the Pd/ WC(0001) surface. Both CO and H prefer three-fold sites, with adsorption energies of −1.51 and −2.67 eV, respectively. On the other hand, CH3O stably binds at three-fold and bridge sites, with an adsorption energy of −2.58 eV. However, most of the other intermediates tend to adsorb to the surface with the carbon and oxygen atoms in their sp3 and hydroxyl-like configurations, respectively. Hence, the C atom of CH2OH preferentially attaches to the top sites, CHOH and CH2O adsorb at the bridge sites, while COH and CHO occupy the three-fold sites. The DFT calculations indicate that the rupture of the initial C–H bond promotes the decomposition of CH3OH and CH2OH, whereas in the case of CHOH, O–H bond scission is favored over the C–H bond rupture. Thus, the most probable methanol decomposition pathway on the Pd/WC(0001) surface is CH3OH → CH2OH → trans-CHOH → CHO → CO. The present study demonstrates that the synergistic effect of WC (as carrier) and Pd (as catalyst) alters the CH3OH decomposition pathway and reduces the noble metal utilization.  相似文献   

2.
The syntheses of dimethyl oxalate (DMO) and diethyl oxalate (DEO) by CO coupling reaction in gaseous phase were investigated in a fixed bed reactor over Pd-Fe/Al2O3 catalyst. The catalytic performance was characterized by CO conversion, space-time yield (STY) and selectivity of DMO (or DEO). The results showed that over Pd-Fe/Al2O3 catalyst, the STY of DMO was higher than that of DEO under the same reaction conditions. The optimum reaction temperatures for synthesizing DMO and DEO were 403 K and 393 K, respectively, at the molar ratio 1 ∶ 1 of alkyl nitrite to CO. The difference in synthesizing DMO and DEO on the same catalyst was attributed to the decomposition performances of methyl nitrite (MN) and ethyl nitrite (EN), as density functional theory (DFT) calculation showed that EN decomposed more easily than MN.  相似文献   

3.
采用液相原位还原法制备Pd/α-Al2O3催化剂,并应用于CO氧化偶联合成草酸二甲酯反应。对比实验发现,甲醛液相原位还原法制得的Pd基催化剂具有优异的催化活性,当Pd负载质量分数低至0.1%时,催化剂仍表现出较高的活性和稳定性。采用XRD和BET等对催化剂及载体进行表征,结果表明,催化剂活性与载体的比表面积、孔容和孔径没有必然联系。通过TEM发现,0.1%-Pd/α-Al2O3催化剂中的主要活性组分Pd具有较小的颗粒和较高的分散性,通过HRTEM发现,液相原位还原法制备的催化剂能够有效暴露出Pd(111)晶面。  相似文献   

4.
采用浸渍法制备CO偶联制备草酸二甲酯用负载型Pd催化剂,考察载体、浸渍方法、Pd含量、助剂对Pd催化剂性能的影响。根据傅里叶变换红外光谱研究Pd/α-Al_2O_3负载型催化剂上CO偶联制草酸二甲酯的反应机理。结果表明,采用α-Al_2O_3载体,Pd质量分数4‰,掺杂助剂Cu的蛋壳型的Pd/α-Al_2O_3催化剂上,草酸二甲酯时空收率达到735.7 g·(L·h)~(-1)。  相似文献   

5.
采用XRD、BET等手段,考察Pd-Al2O3催化剂载体晶型和助剂种类对CO气相偶联合成草酸二甲酯的影响。结果表明,以α-Al2O3为催化剂载体,以La为助剂,草酸二甲酯的空时收率达到0.53 g/mL.h,CO转化率达到70%。  相似文献   

6.
The effect of adsorbed oxygen for selectivity of acetophenone (AP) hydrogenation on Pd/SiO2 catalyst at 298 K has been studied by means of gas phase acetophenone hydrogenation, infrared (IR) spectra, and temperature-programmed desorption. Acetophenone hydrogenation on reduced Pd/SiO2 catalyst reveals a typical series reaction in which phenylethanol (PE) is the intermediate for ethylbenzene (EB) formation. The selectivity of the reaction is towards phenylethanol at low temperature. The oxidized Pd/SiO2 catalyst exhibits very different catalytic selectivity with reduced catalyst. The selectivity of ethylbenzene can be significantly boosted to over 90%, even if the reaction approaches zero conversion, suggesting that phenylethanol needs not be an intermediate for production of ethylbenzene from acetophenone. The formation of ethylbenzene and phenylethanol on oxidized Pd may be controlled by a parallel reaction pathway. The numbers of adsorbed oxygen on Pd surface strongly dominate the rate of EB formation. The bulk Pd oxide cannot be reduced by hydrogen at 298 K, so the oxygen atoms in Pd bulk act a poison for AP hydrogenation, leading to deactivation of oxidized Pd catalyst. The adsorbed oxygen on Pd surface plays the important role that can activate the C---H bond of CH3 group in acetophenone, leading to the formation of a new intermediate (perhaps acetophenone enolate). This intermediate is the key species that will be further hydrogenated to ethylbenzene.  相似文献   

7.
Sharp NO and O2 desorption peaks, which were caused by the decomposition of nitro and nitrate species over Fe species, were observed in the range of 520–673 K in temperature-programmed desorption (TPD) from Fe-MFI after H2 treatment at 773 K or high-temperature (HT) treatment at 1073 K followed by N2O treatment. The amounts of O2 and NO desorption were dependent on the pretreatment pressure of N2O in the H2 and N2O treatment. The adsorbed species could be regenerated by the H2 and N2O treatment after TPD, and might be considered to be active oxygen species in selective catalytic reduction (SCR) of N2O with CH4. However, the reaction rate of CH4 activation by the adsorbed species formed after the H2 and N2O or the HT and N2O treatment was not so high as that of the CH4 + N2O reaction over the catalyst after O2 treatment. The simultaneous presence of CH4 and N2O is essential for the high activity of the reaction, which suggests that nascent oxygen species formed by N2O dissociation can activate CH4 in the SCR of N2O with CH4.  相似文献   

8.
Neurock  Matthew 《Topics in Catalysis》1999,9(3-4):135-152
The reaction paths for the hydrogenation of CO to methanol over Pdx (x = 1–4 and 19) cluster models were examined using first-principle density functional quantum chemical calculations. The predicted adsorption energies for the most favorable binding modes for CO, H2, HCO, H3CO, CH3OH, C, O and H on a Pd19 model Pd(111) clusters were -147, -62, -340, -51, -195, -33, -610, -349 and -251 kJ/mol, respectively. The most favorable modes for CO, CH3O, H, C and O on Pd(111) were all found to be the 3-fold fcc site. The most favorable modes for the formyl and formaldehyde surface intermediates at low coverage were the 3-fold (ζ2μ3), and the di-σ sites, respectively. At higher surface coverages, however, the atop ζ1 (C) and the π modes for the formyl and formaldehyde intermediates were more likely. The computed adsorption energies were subsequently used to compute overall reaction energies for the hydrogenation of CO to methanol. The initial hydrogenation of CO to the ζ1 (C) HCO intermediate was found to be +52 kJ/mol endothermic and has been speculated as a possible rate-limiting step. The remaining surface hydrogenation steps become increasingly more exothermic as more hydrogen was added. The elementary steps of formyl to formaldehyde, formaldehyde to methoxide and methoxide to methanol were computed to be -9, -26 and -33 kJ/mol, respectively. The overall energy for CO dissociation was found to be highly unlikely at +260 kJ/mol and a clear indication that methanation and chain growth chemistry is not very likely over Pd. The most favorable reaction coordinate for the hydrogenation of CO to the ζ1 (C) formyl intermediate was that which proceeds over a single Pd site where there is a migratory insertion of the CO into a Pd–H bond. The barrier for this path was computed to be +78 kJ/mol on the Pd19 cluster. There was a very weak dependence on cluster size. This is a likely indication that this reaction is structure insensitive. A second path which involved the coupling of H and CO over a bridge site was found to be +130 kJ/mol which is less likely, but may also occur under different conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The following materials have been prepared having monolayer equivalent loadings of the indicated dopants: Li+/MgO, Ca2+/MgO, Sr2+/MgO and Ba2+/MgO. A continuous-flow microcatalytic reactor system has been used to compare activities of these surface-doped materials for : (a) the catalytic dissociation of N2O alone at 760K and 958K; (b) N2O dissociation accompanied by methane coupling and oxidation in a flow of (N2O + CH4) reactants at temperatures 760–958K; (c) Methane coupling and oxidation in (O2 + CH4) at temperatures 760–993K. The methane-activation roles proposed for various surface sites/intermediates on MgO-based materials are reconsidered in the light of these results.  相似文献   

10.
The catalytic reduction of N2O by CH4, CO, and their mixtures has been comparatively investigated over steam-activated FeZSM-5 zeolite. The influence of the molar feed ratio between N2O and the reducing agents, the gas-hourly space velocity, and the presence of O2 on the catalytic performance were studied in the temperature range of 475–850 K. The CH4 is more efficient than CO for N2O reduction, achieving the same degree of conversion at significantly lower temperatures. The apparent activation energy for N2O reduction by CH4 was very similar to that of direct N2O decomposition (140 kJ mol−1), being much lower for the N2O reduction by CO (60 kJ mol−1). This suggests that the reactions have a markedly different mechanism. Addition of CO using equimolar mixtures in the ternary N2O + CH4 + CO system did not affect the N2O conversion with respect to the binary N2O + CH4 system, indicating that CO does not interfere in the low-temperature reduction of N2O by CH4. In the ternary system, CO contributed to N2O reduction when methane was the limiting reactant. The conversion and selectivity of the reactions of N2O with CH4, CO, and their mixtures were not altered upon adding excess O2 in the feed.  相似文献   

11.
Cordierite monoliths coated with Pd-Fe/α-Al2O3 catalysts were prepared at various calcination temperatures and characterized by thermogravimetry, temperature-programmed reduction, transmission electron microscopy, diffuse reflectance infrared Fourier transformation spectroscopy and X-ray diffraction. The performance of the catalytic monoliths for the synthesis of dimethyl oxalate (DMO) through a CO coupling reaction was evaluated. Monolithic catalysts with calcination temperatures ranging from 473 K to 673 K exhibited excellent dispersion of Pd, good CO adsorption properties, and excellent performance for the coupling reaction. The optimized monolithic catalyst exhibited a much higher Pd efficiency (denoted as DMO (g)·Pd (g)-1·h-1) (733 h-1) than that of the granular catalyst (60.2 h-1), which can be attributed to its honeycomb structure and the large pore sizes in the α-Al2O3 washcoat which was accompanied with an even distribution of the active component in the coating layer along the monoliths channels.  相似文献   

12.
Nitrous Oxide (N2O), an ozone depleting greenhouse gas, is an observed intermediate in aqueous nitrate/nitrite reduction mediated by both natural microbial and synthetic laboratory catalysts. Because of our interest in catalytic nitrate/nitrite remediation, we have endeavored to develop a detailed concordant experimental/theoretical picture of N2O reduction with H2 over a Pd catalyst in an aqueous environment. We use batch experiments in H2 excess and limiting conditions to examine the reduction kinetics. We use density functional theory (DFT) to model the elementary steps in N2O reduction on model Pd(100), Pd(110), Pd(111) and Pd(211) facets and including the influence of adsorbed O, H, and of H2O. Both experiments and theory agree that hydrogen is necessary for removal of adsorbed oxygen from the catalyst surface. The dissociation of N2O to N2(g) and O(ads) is facile and in the absence of H proceeds until the catalyst is O-covered. Water itself is proposed to facilitate the hydrogenation of surface O by transferring absorbed hydrogen to Pd-absorbed O and OH. We measure an apparent activation energy of 41.4?kJ/mol (0.43?eV) for N2O reduction in the presence of excess H2, a value that is within 0.1?eV of the barriers determined theoretically.  相似文献   

13.
侯蕾  徐卫  杜霞茹  肖菲  吴熠 《工业催化》2019,27(3):43-46
考察助剂、制备方法和还原介质对CO气相偶联合成草酸二甲酯催化剂性能的影响。结果表明,以贵金属Pd为活性组分,非贵金属C为助剂,以α-Al_2O_3为载体,采用分步等体积浸渍法制备的催化剂,在水合肼还原后,具有良好的反应活性和稳定性。在反应温度130℃,空速3 000 h^(-1)时,产物中草酸二甲酯含量90%以上,时空收率平均可达813 g·(L·h)^(-1)。催化剂PC-3反应500 h后,物理性能和反应活性变化不大。  相似文献   

14.
An in situ infrared spectroscopic study was conducted to elucidate the reaction pathways for low-temperature methanol synthesis in a catalytic system composed of Ni(CO)4 and CH3OK (denoted as Ni(CO)4/CH3OK). The reaction was conducted in a liquid medium at 313–333 K with an initial pressure of 3.0 MPa. When CH3OK was added to Ni(CO)4 solution at 293 K, different carbonylnickelates, [Ni5(CO)12]2−, [Ni6(CO)12]2− and [Ni(CO)3(COOCH3)], were immediately formed from Ni(CO)4. The species and the composition of the carbonylnickel complexes varied with temperature. The variations in concentrations of methanol (MeOH) and methyl formate (MF) during the run, which were determined from their IR absorptions, indicated a pattern characteristic of consecutive reactions with MF as an intermediate. Thus, it was shown that methanol was produced through the carbonylation of MeOH to MF and the subsequent hydrogenation of MF to MeOH. Stable hydridocarbonylnickel anions, [HNi(CO)3] and/or [HNi2(CO)6], were observed together with a small amount of Ni(CO)4 throughout the methanol synthesis. Since Ni(CO)4 alone showed no activity for the hydrogenation of MF, the hydridocarbonylnickel anions generated in the presence of CH3OK must be responsible for the reaction. The dual role of CH3OK in the catalytic system was stated.  相似文献   

15.
The interactions between Pd/TiO2 catalyst and the reactants and potential reaction intermediates present during aqueous nitrate reduction, including NO3, NO2 and NO in the presence of H2 and H2O were studied by infrared spectroscopy. Adsorbed forms of NO, nitrite and nitrate could all be detected in the presence of water. In the presence of water/H2, nitrate was the most stable surface species followed by nitrite and then highly reactive NO, suggesting that the reduction of nitrate to nitrite is the rate-limiting step. High concentrations of adsorbed nitrite appear to be linked to the detection of gaseous N2O while the formation of ammonia is related to reactions on the Pd surface and the extent of formation is linked to high levels of adsorbed NO in addition to the surface hydrogen availability and the presence of water.  相似文献   

16.
高效稳定的铜镍催化剂在草酸二甲酯加氢中的应用   总被引:1,自引:1,他引:0  
王登豪  张传彩  朱明远  于锋  代斌 《化工学报》2017,68(7):2739-2745
为了探索高效、稳定的草酸二甲酯(DMO)加氢制乙醇酸甲酯(MG)催化剂,采用水热合成法制备Cu-Ni/SiO2催化剂,探索了不同Cu:Ni摩尔比对于催化剂活性的影响。通过XRD、TEM和XPS等表征,结果表明:利用二氧化硅微球作载体,铜镍物种的分散更加均匀。并且调变不同的Cu:Ni摩尔比,对Cu+在催化剂中的比例有一定的影响,从而影响乙醇酸甲酯的收率。在氢酯比为150、反应压力2 MPa、反应温度200℃和液时空速为0.5 h-1的反应条件下,Cu:Ni摩尔比为1:1时的催化剂Cu1Ni1/SiO2表现出了最好的催化性能,草酸二甲酯的转化率达到90%,乙醇酸甲酯的选择性达到了80%,催化剂能稳定运行100 h。上述结果可为研制催化活性高、选择性强、寿命长、易于生产乙醇酸甲酯的催化剂提供一定的参考。  相似文献   

17.
Catalytic performance of Pd-Ag/-Al2O3 was studied for the selective hydrogenation of acetylene in the presence of excess ethylene. The catalyst activation was undertaken prior to the reaction test by the pretreatment with oxygen and/or oxygen-containing compounds, i.e. O2, NO, N2O, CO and CO2. The enhancement of catalytic performances by the pretreatment was a consequence of an increase in accessible Pd sites responsible for acetylene hydrogenation to ethylene. Furthermore, the sites involving direct ethane formation from acetylene could be suppressed by NOx treatment.  相似文献   

18.
Ethylene hydroformylation and carbon monoxide hydrogenation (leading to methanol and C2-oxygenates) over Rh/SiO2 catalysts share several important common mechanistic features, namely, CO insertion and metal–carbon (acyl or alkyl) bond hydrogenation. However, these processes are differentiated in that the CO hydrogenation also requires an initial CO dissociation before catalysis can proceed. In this study, the catalytic response to changes in particle size and to the addition of metal additives was studied to elucidate the differences in the two processes. In the hydroformylation process, both hydroformylation and hydrogenation of ethylene occurred concurrently. The desirable hydroformylation was enhanced over fine Rh particles with maximum activity observed at a particle diameter of 3.5 nm and hydrogenation was favored over large particles. CO hydrogenation was favored by larger particles. These results suggest that hydroformylation occurs at the edge and corner Rh sites, but that the key step in CO hydrogenation is different from that in hydroformylation and occurs on the surface. The addition of group II–VIII metal oxides, such as MoO3, Sc2O3, TiO2, V2O5, and Mn2O3, which are expected to enhance CO dissociation, leads to increased rates in CO hydrogenation, but only served to slow the hydroformylation process slightly without any effect on the selectivity. Similar comparisons using basic metals, such as the alkali and alkaline earths, which should enhance selectivity for insertion of CO over hydrogenation, increased the selectivity for the hydroformylation over hydrogenation as expected, although catalytic activity was reduced. Similarly, the selectivity toward organic oxygenates (a reflection of the degree of CO insertion) in CO hydrogenation was also increased.  相似文献   

19.
The technique of temperature programmed desorption has been employed to study the adsorptive behaviour of CaO and Na2O/CaO towards the reactants and products of the methane-coupling reaction. Two forms of adsorbed O2 can exist on CaO, and they desorb at intermediate temperatures: the first corresponds to the sites for adsorption and desorption without reaction of CH4, while the second to sites for desorption with total oxidation of CH4 itself. At the temperatures of the activity runs for methane coupling (750–800 °C), no adsorbed species is therefore stable on the surface of CaO. 7% Na2O/CaO shows different features, because the desorption of O2 produces only a large broad peak at very high temperatures, corresponding to sites for adsorption and desorption with total oxidation of CH4. (On the other hand a desorption peak of CH4 at intermediates temperatures is also present, which seems to be due to a species, adsorbed undissociatively and desorbed without reaction). At the temperatures of the activity experiments, adsorbed species are therefore stable on the surface of Na2O/CaO. A conclusion is therefore drawn on the necessity for the intervention of the gas phase O2 during the methane coupling reaction in order to produce C2-hydrocarbons, and on the greater importance of the surface reactions in the presence of Na2O, in comparison to the case of CaO.  相似文献   

20.
合成气经草酸二甲酯加氢制乙二醇技术在工业应用过程中存在一些技术难题,其中草酸二甲酯加氢制乙二醇催化剂的稳定性是制约该技术发展的瓶颈。以Cu/SiO_2草酸二甲酯加氢催化剂A为研究对象,通过2 600 h的稳定性实验研究,考察反应温度对草酸二甲酯转化率、乙二醇选择性以及产物中乙醇酸甲酯含量的影响,为合成气经草酸二甲酯制乙二醇技术的工业应用优化提供重要的技术支持。结果表明,当反应压力2.8 MPa、空速(0.3~0.5)h-1、氢酯物质的量比120~140和反应温度216℃时,草酸二甲酯转化率近100%,乙二醇选择性大于95.0%,产物中乙醇酸甲酯质量分数小于0.5%,Cu/SiO_2催化剂A稳定性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号