首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH_4/N_2 mixtures. The isotherms recorded for CH_4 and N_2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R~20.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH_4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm~3·g~(-1)(STP) of CH_4, due to it having the largest pore volume and surface area, but the lowest selectivity(S_(CH_4/N_2)= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH_4 from low concentration methane(CH_420%) based on its larger pore volume and higher CH_4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH_450%) due to its higher selectivity.  相似文献   

2.
SSZ-13 membranes with high separation performances were prepared using ball-milled nanosized seeds by once hydrothermal synthesis. Separation performances of SSZ-13 membranes in CO_2/CH_4 and N_2/CH_4 mixtures were enhanced after synthesis modification. Single-gas permeances of CO_2, N_2 and CH_4 and ideal selectivities were recorded through SSZ-13 membranes. The effects of temperature, pressure, feed flow rate and humidity on separation performance of the membranes were discussed. Three membranes prepared after synthesis modifications had an average CO_2 permeance of 1.16 × 10~(-6) mol·(m~2· s·Pa)~(-1)(equal to 3554 GPU) with an average CO_2/CH_4 selectivity of 213 in a 50 vol%/50 vol% CO_2/CH_4 mixture. It suggests that membrane synthesis has a good reproducible. The membrane also displayed a N_2 permeance of 1.07 × 10~(-7) mol·(m~2·s·Pa)~(-1)(equal to 320 GPU) with a N_2/CH_4 selectivity of 13 for a 50 vol%/50 vol% N_2/CH_4 mixture. SSZ-13 membrane displayed stable and good separation performance in the wet CO_2/CH_4 mixture for a long test period over 100 h at 348 K. The current SSZ-13 membranes show great potentials for the simultaneous removals of CO_2 and N_2 in natural gas purification as a facile process suitable for industrial application.  相似文献   

3.
CAU-1 is one of aluminum-based amine-functionalized Metal–Organic Frameworks(MOFs). Gas permeation and separation behaviors through CAU-1 membrane were simulated by the dual-control plane nonequilibrium molecular dynamics(DCP-NEMD) method. The thickness of membrane was 3.55 nm.Gases CO_2, N_2, CH_4, H_2, He, Kr and Xe were chosen for the calculation in both single component and binary mixtures. The permeation process was calculated in grand canonical(l VT) ensemble with periodic boundary conditions(PBC) in x-and y-directions at different temperatures. The calculated permeance of H_2, CH_4, N_2, CO_2 and Kr decreased with increasing temperature in both single and binary system, while that of Xe with kinetic molecule of 0.41 nm increased with increasing temperature. It shows Xe permeation is governed by activated diffusion. The simulated separation factors of CO_2/N_2 and CO_2/CH_4 of 4.2 and 1.3 respectively were lower than the experimental ones when only considering van der Waals interaction. Further consideration of electrostatic potential leads to improved calculation CO_2/N_2 and CO_2/CH_4 separation factor of 23.0 and 12.9 respectively that were consistent with the experimental ones of 26.2 and 14.8. It suggests the necessity of considering the Coulomb interactions between CO_2 and NH_2-on the pore wall of CAU-1 for permeation of CO_2. For H_2/N_2 and H_2/CH_4 the ideal selectivities also keep consistent with our experimental results. Interestingly, the simulated separation factor for noble Kr/Xe reaches infinite, predicting that CAU-1 membrane possesses potential separation properties for radioactive Kr/Xe.  相似文献   

4.
Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.  相似文献   

5.
The adsorption equilibria of N_2,Ar,CH_4,CO_2,and N_2O on H-Mordenite were studied with a constant volume appa-ratus under pressure from 3.04×10~3 to 1.43×10~7 Pa at—196°,0°,25°,50°and 75℃.The amount of adsorption ofN_2,Ar and CH_4 increases with pressure until approaching saturation at about 6.08×10~6 Pa.A maximum exists on theadsorption isotherm of CO_2 and N_2O,and their isotherms at different temperatures cross each other.All the data obtainedin this work can be correlated by the extended adsorption potential theory quite well.All experimental points can be repre-sented by the generalized characteristic curve.  相似文献   

6.
In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performance of polyurethane–zeolite 3A, ZSM-5 mixed matrix membranes.The basis of the experiments was a rotatable central composite design(CCD).The three independent variables studied were: zeolite content(0–24 wt%), operating temperature(25–45 ℃) and operating pressure(0.2–0.1 MPa).The effects of these three variables on the selectivity and permeability membranes were studied by the analysis of variance(ANOVA).Optimal conditions for the enhancement of gas separation performances of polyurethane–3A zeolite were found to be 18 wt%, 30 ℃ and 0.8 MPa respectively.Under these conditions, the permeabilities of carbon dioxide, methane, oxygen and nitrogen gases were measured at 138.4, 22.9, 15.7 and 6.4 Barrer respectively while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 5.8, 22.5 and 2.5, respectively.Also, the optimal conditions for improvement of the gas separation performance of polyurethane–ZSM 5 were found to be 15.64 wt%, 30 ℃ and 4 bar.The permeabilities of these four gases(i.e.carbon dioxide, methane, oxygen and nitrogen) were 164.7, 21.2, 21.5 and 8.1 Barrer while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 7.8, 20.6 and 2.7 respectively.  相似文献   

7.
In this paper, a model of activated carbon was established by molecular simulation and the separation performance of N_2 and CH_4 on activated carbon was studied. In order to evaluate the adsorption selectivity and diffusion selectivity of N_2 and CH_4, Grand Canonical Monte Carlo and molecular dynamic methods were used to obtain equilibrium adsorption isotherms and mean square displacements of N_2 and CH_4 on activated carbon with different pore sizes. Research results showed that the difference in adsorption isosteric heat of N_2 and CH_4 at the pore size of 0.46 nm is the largest, which is 5.759 and 7.03 kcal·mol~(-1)(1 cal=4.184 J), respectively. Activated carbon with pore size of 0.46 nm has the best N_2 and CH_4 adsorption selectivity, while its diffusion selectivity is not obvious.  相似文献   

8.
In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4~(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4~(2-), SeO_3~(2-), and AsO_4~-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L~(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R~2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R~2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g~(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.  相似文献   

9.
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.  相似文献   

10.
In situ separation of ethanol during batch fermentation with CO_2 stripping and activated carbon adsorption was studied. The higher initial glucose concentration and fermentation rate were reached due to the elimination of ethanol inhibition on the cell growth by means of CO_2 stripping. The stripped ethanol vapor was selectively adsorbed by an activated carbon column. The conde(?)sate desorbed from the adsorption column can be higher than 50% by weight. Ar unstructured model was used to simulate the experimental data satisfactorily.  相似文献   

11.
In this work grand canonical Monte Carlo simulations were performed to study gas separation in three pairs of isoreticular metal-organic frameworks (IRMOFs) with and without catenation at room temperature. Mixture composed of CO2 and H2 was selected as the model system to separate. The results show that CO2 selectivity in catenated MOFs with multi-porous frameworks is much higher than their non-catenated counterparts. The simulations also show that the electrostatic interactions are very important for the selectivity, and the contributions of different electrostatic interactions are different, depending on pore size, pressure and mixture composition. In fact, changing the electrostatic interactions can even qualitatively change the adsorption behavior. A general conclu-sion is that the electrostatic interactions between adsorbate molecules and the framework atoms play a dominant role at low pressures, and these interactions in catenated MOFs have much more pronounced effects than those in their non-catenated counterparts, while the electrostatic interactions between adsorbate molecules become evident with increasing pressure, and eventually dominant.  相似文献   

12.
Tensile strain of porous membrane materials can broaden their capacity in gas separation. In this work, using van der Waals corrected density functional theory(DFT) and molecular dynamics(MD) simulations, the performance and mechanism of CO_2/CH_4 separation through strain-oriented graphdiyne(GDY) monolayer were studied by applying lateral strain. It is demonstrated that the CO_2 permeance peaks at 1.29 × 10~6 gas permeation units(GPU) accompanied with CO_2/CH_4 selectivity of 5.27 × 10~3 under ultimate strain, both of which are far beyond the Robeson's limit. Furthermore, the GDY membrane exhibited a decreasing gas diffusion energy barrier and increasing permeance with the increase of applied tensile strain. CO_2 molecule tends to reoriented itself vertically to permeate the membrane. Finally, the CO_2 permeability decreases with the increase of the temperature from300 K to 500 K due to conserving of rotational freedom, suggesting an abnormal permeance of CO_2 in relation to temperature. Our theoretical results suggest that the stretchable GDY monolayer holds great promise to be an excellent candidate for CO_2/CH_4 separation, owing to its extremely high selectivity and permeability of CO_2.  相似文献   

13.
In this report,Co-based catalysts supported on ZnO,Al_2O_3 and ZrO_2 as well as the ZrO_2 derived from different precipitants and different pH values were prepared by co-precipitation method.Their catalytic Fischer–Tropsch synthesis(FTS)performance was investigated in a fixed-bed reactor.The results revealed that Co catalyst supported on ZrO_2 exhibited better FTS catalytic performance than that supported on ZnO or Al_2O_3.For the Co/ZrO_2catalyst,different precipitants showed the following an activity order of NaOHNa_2CO_3NH_4OH,and the best pH value is 13.The catalysts were characterized by N_2adsorption–desorption,XRF,XRD,H_2-TPR,H_2-TPD and TEM.It was found that the main factor affecting the CO conversion of the catalyst was the amounts of low-temperature active adsorption sites.Moreover,the selectivity of C_5~+hydrocarbons had a positive relationship with the peak temperature of the weak hydrogen adsorption sites.The higher the peak temperature,the higher the C_5~+selectivity is.  相似文献   

14.
The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.  相似文献   

15.
Metal organic frameworks(MOFs)are promising adsorbents for CO2capture.Functional groups on organic linkers of MOFs play important roles in improving the CO2 capture ability by enhancing the CO2 sorption affinity.In this work,the functionalization effects on CO2 adsorption were systematically investigated by rationally incorporating various functional groups including–SO3H,–COOH,–NH2,–OH,–CN,–CH3 and–F into a MOF-177 template using computational methods.Asymmetries of electron density on the functionalized linkers were intensified,introducing significant enhancements of the CO2 adsorption ability of the modified MOF-177.In addition,three kinds of molecular interactions between CO2 and functional groups were analyzed and summarized in this work.Especially,our results reveal that–SO3H is the best-performing functional group for CO2 capture in MOFs,better than the widely used–NH2 or–F groups.The current study provides a novel route for future MOF modification toward CO2 capture.  相似文献   

16.
As we know, there are three structures-sⅠ, sⅡ, and sH, with hydrocarbonate gas hydrate. Because of those special structures characteristics and potentail large fossil energy resource, gas hydrate play an important role in natural carbonate cycle system. In this paper, CH_4, CO_2, C_3H_8, and CH_4 CO_2 system have been experimental performed in order to model hydrate formation and discomposition and to obtain hydrate stability conditions of tempreature and pressure. The results from laboratory using Raman spectra show that Raman spectrascopy is a effective tool to identify hydrate structure. Raman spectra of clathrate hydrate guest molecules are presented for two structure (sⅠ and sⅡ) in the following systems: CH_4, CO_2, C_3H_8. Relatively occupancy of CH_4 in the large and small cavities of sⅠ were determined by deconvoluting the v_1 symmetric bands, resulting in hydration numbers of 6.04±0.03. The freqyuency of the v_1 bands for CH_4 in structures Ⅰ and Ⅱ differ statistically. The large cavities were measured to be almost fully occupied by CH_4 and CO_2, whereas only a small fraction of the small cavities are occupied by CH_4. No CO_2 was found in the small cavities.  相似文献   

17.
A systematic molecular simulation study was performed to investigate the effect of catenation on methane adsorption in metal-organic frameworks (MOFs). Four pairs of isoreticular MOFs (IRMOFs) with and without catenation were adopted and their capacities for methane adsorption were compared at room temperature. The pre-sent work showed that catenation could greatly enhance the storage capacity of methane in MOFs, due to the for-mation of additional small pores and adsorption sites formed by the catenation of frameworks. In addition, the simulation results obtained at 298 K and 3.5 MPa showed that catenated MOFs could easily meet the requirement for methane storage in porous materials.  相似文献   

18.
Metalworking fluids(MWFs) are classified as hazardous substances. Due to the characteristics of the stable oil–water emulsions, it requires more costly and complicate treatment techniques to remove oil from spent MWFs. Metal organic frameworks(MOFs) are a porous network material used to remove contaminants from environment. One of the most prominent of MOFs is HKUST-1 or Cu-BTC. In this study, the Cu-BTCs were prepared by solvothermal method in various conditions and used as absorbent for removing oil micelles in MWF emulsion. The particle size of all synthesized Cu-BTCs ranged from ≈80 to 400 nm. The ability of all synthesized Cu-BTCs to remove oil micelle was greater than 95% in 60 min, while the capacity of GAC was obtained the result for only 6.8%. The maximum adsorption capacity(q _(max)) of oil micelles on Cu-BTCs was 1666.7 mg·g~(-1). The highest removal capacity of oil micelles in MWF emulsion is greater than 99% in 24 h by using Cu-BTCs washed with either butanol or ethanol.  相似文献   

19.
Adsorption properties of an adsorbent or a catalyst towards adsorbates are crucial in the process of adsorption separation or catalytic reaction. Surface morphology and structure of adsorbents have a significant impact on the adsorption properties. In this study, a novel acidic ionic liquid, 1-butyl-3-(triethoxysilylpropyl)imidazolium hydrogen sulfate(i.e., [BTPIm][HSO_4]), was synthesized and subsequently grafted onto the MCM-36 zeolite for the regulation of its adsorption properties towards isobutane and 1-butene. The resultant [BTPIm][HSO_4]-immobilized MCM-36(i.e., MCM-36-IL) was characterized by FT-IR, XPS, XRD, SEM, TG/DTG and N_2 adsorption–desorption measurement. It was found that the specific surface area, micropore volume and mesopore volume of the MCM-36 support underwent a reduction upon the immobilization of ionic liquid,while the surface density of acid increased from 0.0014 to 0.0035 mmol·m~(-2). The adsorption capacity of isobutane and 1-butene on the MCM-36-IL was determined by a static volumetric method. Results demonstrated that the interaction between isobutane and MCM-36-IL was enhanced and the interaction between 1-butene and MCM-36-IL was reduced. As a result, a tunable adsorption ratio of isobutane/1-butene on MCM-36 was achieved.With the increase in surface density of acid and the tunable adsorption ratio of isobutane and 1-butene on the functionalized MCM-36, the acidic ionic liquid-immobilized zeolites are beneficial to obtain an improved reaction yield and a prolonged catalyst life in the reactions catalyzed by solid acid.  相似文献   

20.
何彬  刘杨  孙彦 《化工学报》2004,55(10):1728-1731
Triton X-114, an non-ionic surfactant, was modified with the affinity ligand of trypsin, paminobenzamidine (PAB) and the affinity surfactant (PAB-TX) was synthesized. Then, the affinity surfactant was used to prepare affinity-based colloidal gas aphrons (CGA). The stability of the affinity CGA was investigated at different temperatures and compared with that of the CGA prepared from Triton X-114. Compared with the CGA from Triton X-114, the affinity CGA showed high selective adsorption property for trypsin. In the separation of a protein mixture, recovery yield higher than 74% were achieved for trypsin and the separation factor reached over 1.5. The results showed that the affinity CGA possessed promising selectivity for separating trypsin from a protein mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号