共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic behaviour of Pt supported on carbon-based monoliths was studied in the low-temperature catalytic combustion of benzene, toluene and m-xylene and compared with the corresponding behaviour of Pt supported on γ-Al 2O 3 coated monoliths. Carbon-based monoliths showed a much better catalytic performance which is ascribed to the fact that the carbon surface is more hydrophobic than the γ-Al 2O 3 one, and the release of water molecules produced during the combustion is favoured. 相似文献
2.
Total combustion of m-xylene over Pd/stainless steel flakes has been investigated. Ignition temperature of the catalytic combustion of m-xylene mixtures over palladium catalysts is lowered by about 330°C compared to that of thermal oxidation. Hysteresis in the conversion-temperature curves recorded in temperature programmed modes is controlled not only by the operating conditions (the temperature ramp, concentration of the reactants, contact time) but also by catalyst pretreatments. High and low activity states have been observed with typical ignition temperatures of 200–250°C and about 400°C, respectively. In high activity state the combustion is likely initiated by the catalyst followed by a chain reaction which propagates into the gas phase. This is strongly supported by the abrupt increase in the conversion profile. During the induction period preceding the combustion, active species are accumulated on the surface which are responsible for this process. 相似文献
3.
When the perovskites are calcined at 750 °C, the incorporation of Pd into LaMnO 3 enhances the activity of the catalyst in methane combustion at temperatures below 750 °C upon substitution of 0.1 mol La with Pd, and at temperatures below 600 °C when Pd is substituted for 0.1–0.15 mol Mn. Monolith catalysts based on La 1−xPd xMnO 3 ( x = 0.1, 0.15) display a higher activity in methane combustion than do LaMn 1−xPd xO 3-based catalysts, which is due to the higher Pd/(Pd + Mn + La) ratio. The activities of the two perovskite types increase when calcination temperature is raised from 650 to 800 °C. With the increase in calcination temperature, an increase in the Pd content and a decrease in the La content is observed on the surfaces (X-ray photoelectron spectroscopy (XPS)). The rise in the temperature of perovskite calcination to 850 °C produces sintering which leads to the lowering in both the Pd content on the surfaces and the specific surface areas (SSAs) of the perovskites and, consequently, decreases catalytic activity. 相似文献
4.
In this work carbon nanofiber (CNF)-coated monoliths with a very thin, homogeneous, consistent and good adhered CNF layer were obtained by means of catalytic decomposition of ethylene on Ni particles.The catalytic behaviour of Pt and Pd supported on the CNF-coated monoliths was studied in the low-temperature catalytic combustion of benzene, toluene and m-xylene (BTX) and compared with the performance of Pt and Pd supported on γ-Al 2O 3 coated monoliths.The catalysts supported on CNF-coated monoliths were the most active, independent of the metal catalyst or the type of the tested aromatic compound. TPD experiments showed that the γ-Al 2O 3 phase retained important amounts of the water molecules produced during the reaction. When water vapour was supplied to the reactant flow, the activity of Pd catalysts decreased much stronger than the Pt ones, and the activity of the Pt catalysts supported on the γ-Al 2O 3 was more affected than that of the catalysts supported on CNF.BTX combustion reactions seem to be catalyzed by Pt and Pd through different kinetic mechanisms, explaining why Pt catalysts always were more active than the Pd ones deposited on the same type of support. Pd catalyzed combustion of benzene is strongly inhibited by oxygen and by water.Catalysts supported on CNF-coated monoliths showed a selectivity to burn benzene better than toluene or m-xylene, attributed to a better aromatic-CNF surface interaction. 相似文献
5.
Supported LaCoO 3 perovskites with 10 and 20 wt.% loading were obtained by wet impregnation of different Ce 1−xZr xO 2 ( x = 0–0.3) supports with a solution prepared from La and Co nitrates, and citric acid. Supports were also prepared using the “citrate method”. All materials were calcined at 700 °C for 6 h and investigated by N 2 adsorption at −196 °C, XRD and XPS. XRD patterns and XPS measurements evidenced the formation of a pure perovskite phase, preferentially accumulated at the outer surface. These materials were comparatively tested in benzene and toluene total oxidation in the temperature range 100–500 °C. All catalysts showed a lower T50 than the corresponding Ce 1−xZr xO 2 supports. Twenty weight percent LaCoO 3 catalysts presented lower T50 than bulk LaCoO 3. In terms of reaction rates per mass unit of perovskite calculated at 300 °C, two facts should be noted (i) the activity order is more than 10 times higher for toluene and (ii) the reverse variation with the loading as a function of the reactant, a better activity being observed for low loadings in the case of benzene. For the same loading, the support composition influences drastically the oxidative abilities of LaCoO 3 by the surface area and the oxygen mobility. 相似文献
6.
Catalytic activity in combustion of toluene in toluene–air mixtures and physical–chemical properties of platinum catalysts prepared from reverse microemulsions (water-in-oil) and by classical impregnation from water solutions of H 2PtCl 6 were studied. Microemulsion catalysts were more active than those prepared classically from water solutions. Size of Pt in classically impregnated catalysts was three times higher than that of catalysts prepared from microemulsions. In case of microemulsion preparation method, platinum is located near the pellet surface or its position in the pellet can be optimised. The effect of oil used in microemulsion system seems to be negligible for the activity of the catalysts with 0.1 wt.% Pt. 相似文献
7.
The catalytic activity and long-term stability of 2% Pd/LaMnO 3-ZrO 2 catalysts for natural gas combustion were deeply investigated. The catalyst, prepared via solution combustion synthesis, was completely characterized (XRD, BET, FESEM/EDS, TPC/TPD/TPR and FT-IR analysis) in the fresh status, and in the aged one, after prolonged treatment under hydro-thermal ageing and S-compounds poisoning (up to 3 weeks of hydro-thermal treatment at 800 °C under a flow of domestic boiler exhaust gases typical composition of 9% CO 2, 18% H 2O, 2% O 2 in N 2, including 200 ppmv of SO 2). An increased catalytic activity towards NG combustion with ageing was detected: the T50, in fact, got lowered from 570 (fresh sample) to 465 °C (after 3 weeks ageing). Highly dispersed Pd centers were predominant on fresh catalyst. Upon ageing, oxygen covered Pd metal particles formed, at the expense of dispersed cationic and zerovalent Pd atoms. The increase in the catalytic activity was associated to the phase modification occurring in the bulk support, where Mn oxides, active towards CH 4 combustion, segregated. Moreover, bands due to sulfate species were detected in aged samples: IR analysis showed that Pd atoms did not interact significantly with these species. The bands of sulfate species decreased in intensity after 3 weeks ageing, likely mostly due to sintering of the catalyst, with the corresponding decrease in the surface area. 相似文献
8.
This work aimed at elucidating the beneficial effect of plasma treatment on the catalytic performance of palladium (Pd) catalysts in methane combustion with the ordered mesoporous molecular sieve Al-MCM-41 as the model support. The plasma treated Pd/Al-MCM-41 catalyst exhibited a higher initial activity and a better stability in comparison with the untreated counterpart catalyst. To clarify the plasma effect, the catalysts were characterized by N 2 sorption analysis, X-ray diffraction (XRD), temperature-programmed desorption of ammonia (NH 3-TPD), pyridine adsorption-infrared spectroscopy (Py-IR), high resolution-transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (CH 4-TPR) experiments. The results obtained confirmed that palladium oxide (PdO) was the active phase. Plasma treatment enhanced the acidity of catalyst and improved the dispersion of PdO particles, which lead to a higher initial activity. The better stability for plasma treated Pd-based catalyst was proved to be closely related to the stronger interaction between palladium oxide and the molecular sieve support. In addition, the sintering of PdO particles over the plasma treated catalyst was not significant during the stability test. These findings may provide useful guidelines for further catalyst design for methane combustion. 相似文献
9.
Catalytic combustion of benzene and methane over palladium catalysts supported on FAU and MOR zeolites and MCM-41 and KIT-1 mesoporous materials were studied to illustrate the effect of pore size and shape of supports on their catalytic activities. The palladium catalysts supported on mesoporous materials showed high activity and a steep increase in the conversion of benzene with rising temperature. The low activity of palladium catalysts supported on FAU zeolite was ascribed to mass transfer limitation. However, conversion profiles of methane on palladium catalysts were similar, although their supports were different as zeolites and mesoporous materials. The catalytic behavior of palladium catalysts in the combustion of benzene and methane was explained by the diffusion properties of fuels in the pores of zeolites and mesoporous materials. 相似文献
10.
The complete catalytic oxidation of 1,2-dichloroethane (DCE) and trichloroethylene (TCE) over alumina supported noble metal catalysts (Pt and Pd) was evaluated. Experiments were performed at conditions of lean hydrocarbon concentration (around 1000 ppm) in air, between 250°C and 550°C in a conventional fixed bed reactor. The catalysts were prepared in a range of metal contents from 0.1 to 1 wt%. Palladium catalysts resulted to be more active than platinum catalysts in the oxidation of both chlorinated volatile organic compounds. DCE was completely destructed at 375°C, whereas TCE required 550°C. HCl was the only chlorine-containing product in the oxidation of DCE in the range of 250–400°C. Tetrachloroethylene was observed as an intermediate in the oxidation of TCE, being formed to a significant extent between 400°C and 525°C. CO was also detected in the oxidation of both DCE and TCE over Pd catalysts, though at temperatures of complete destruction, CO 2 was the only carbon-containing product. The Pt catalysts were selective to CO 2 at the studied conditions. 相似文献
11.
Well crystallised aluminium borate Al 18B 4O 33 has been synthesised from alumina and boric acid with a BET area of 18 m 2/g after calcination at 1100 °C. Afterwards, 2 wt.% Pd/Al 18B 4O 33 was prepared by conventional impregnation of Pd(NO 3) 2 aqueous solution and calcination in air at 500 °C. The catalytic activity of Pd/Al 18B 4O 33 in the complete oxidation of methane was measured between 300 and 900 °C and compared with that of Pd/Al 2O 3. Pd/Al 18B 4O 33 exhibited a much lower activity than Pd/Al 2O 3 when treated in hydrogen at 500 °C or aged in O 2/H 2O (90:10) at 800 °C prior to catalytic testing. Surprisingly, a catalytic reaction run up to 900 °C in the reaction mixture induced a steep increase of the catalytic activity of Pd/Al 18B 4O 33 which became as active as Pd/Al 2O 3. Moreover, the decrease of the catalytic activity observed around 750 °C for Pd/Al 2O 3 and attributed to PdO decomposition into metallic Pd was significantly shifted to higher temperatures (820 °C) in the case of Pd/Al 18B 4O 33. The existence of two distinct types of PdO species formed on Al 18B 4O 33 and being, respectively, responsible for the improvement of the activity at low and high temperature was proposed on the basis of diffuse reflectance spectroscopy and temperature-programmed desorption of O 2. 相似文献
12.
Supported palladium catalysts are very active in the combustion of methane, but still little is known about the kinetic parameters. In this paper a rate expression is presented for an alumina-supported palladium oxide catalyst in the temperature range 180–515°C. Special care was taken to ensure differential conditions during the experiments. In this way, an apparent activation energy of 151±15 kJ/mol was found. The orders in methane, oxygen and water were 1.0±0.1, 0.1±0.1 and −0.8±0.2, respectively. For carbon dioxide a zero order was observed under all conditions. Inhibition by water produced during the reaction was demonstrated to cause non-differential conditions, when a dry feed was used. The rate constant that corrects for this effect could be derived. 相似文献
13.
Conducting polymers, polypyrrole and polyaniline, were used as supports for Pd in order to obtain catalysts with higher performances than a classical Pd/Al 2O 3 catalyst for application in water treatment. The supports and the catalysts were characterized by elemental analysis, Fourier transformed infra-red spectroscopy (FTIR), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD) and by their activity in nitrite reduction. It was demonstrated that these conducting polymers can be advantageously used as support for noble metals such as palladium. Indeed, the redox properties of these supports allow the deposition of a part of palladium directly in the reduced state and also a direct reduction of nitrite, even if this reduction is not complete. The Pd/polyaniline and Pd/polypyrrole catalysts are much more active than the classical Pd/Al 2O 3 catalyst with less ammonium ions. These better performances were explained by the redox and ion-exchange properties of the conducting polymers allowing the exchange between the hydroxides produced and the dopant anion of the conducting polymer. The ion-exchange property of the polymer depends on its oxidation state which is directly linked to the polymerization conditions and then can be easily modulated. 相似文献
14.
This study reports the influence of palladium salt precursor on the catalytic activity of palladium-doped hexaaluminate catalysts for the combustion of 1 vol% CH 4 in the presence of CO 2 and H 2O as inhibitors. Thermal stability of the catalysts is evaluated in long-term catalytic test at 700 °C. The hexaaluminate supports were synthesized using two different procedures: conventional coprecipitation and solid/solid diffusion procedure. Palladium impregnation was carried out by two different routes using Pd(NO 3) 2 in water or Pd(acac) 2 in toluene as impregnation solution. It was observed that using Pd(acac) 2 as precursor allows to attain higher dispersion of the active phase (Pd particles size <3 nm). Compared to the catalysts obtained by impregnation of Pd(NO 3) 2, higher catalytic activities are then obtained. Nevertheless, a deactivation of the samples obtained using Pd(acac) 2 is observed. At the end of the stability test, almost similar catalytic activity is obtained whatever the palladium precursor. Reduction–reoxidation experiment showed that this deactivation is irreversible, and TEM analysis suggest that this deactivation is related to the sintering of Pd particles under reaction over samples synthesized using Pd(acac) 2 as precursor. 相似文献
15.
A series of the Ce 1−xCu xO 2−x/Al 2O 3/FeCrAl catalysts ( x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H 2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce 1−xCu xO 2−x/Al 2O 3/FeCrAl catalysts the surface phase structure were the Ce 1−xCu xO 2−x solid solution, -Al 2O 3 and γ-Al 2O 3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce 1−xCu xO 2−x solid solution. The Cu component of the Ce 1−xCu xO 2−x/Al 2O 3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce 1−xCu xO 2−x solid solution and the Al 2O 3 washcoats and the FeCrAl support. 相似文献
16.
Non-oxide refractory materials, such as silicon nitride having high thermal stability and thermal conductivity can be used as catalytic supports. The influence of the Si 3N 4 support nature and of the chemical compounds used for preparations on the physical-chemistry and catalytic properties of the palladium systems in the total oxidation of methane was investigated. A strong influence of the phase composition and the crystalline state of supports on the catalytic properties in the total oxidation of methane of the Pd catalysts was found. The activity of Pd catalysts increases with the -Si 3N 4 content and crystallization state of the support. The catalytic activity of Pd/-Si 3N 4 is also strongly affected by the preparation procedure. The Pd/-Si 3N 4 catalyst obtained by aqueous impregnation is less active and less stable. It was proposed that if water is used as an impregnation solvent, the surface acid-based properties of Si 3N 4 support and/or of the Pd active phase are irreversibly damaged. Pd supported on -Si 3N 4, prepared by impregnation of the Pd precursors in toluene solutions are found to be the most active and stable under reaction conditions. 相似文献
17.
The catalytic oxidation is considered as an environmental benign method for utilization of various methane-poor gas mixtures, including humid post-ventilation air of coal mines. The small crystallites of palladium phase in the Pd/Al 2O 3 catalyst decrease temperatures necessary to ignite the methane oxidation reaction and to achieve complete conversion of methane. The isotopic exchange of oxygen between the catalyst and the gas phase, the temperature-programmed reduction (TPR) with methane and the X-ray photoelectron spectroscopy studies suggest that it can result from a higher number of the Pd–PdO sites present on the catalysts with small palladium crystallites. The inhibiting effect of water vapour present in the reaction mixture increases with lower dispersion of palladium phase as well as with the water concentration in the feed. The larger palladium crystallites are more significantly affected by the presence of water. It is suggested that water vapour blocks the Pd–PdO active sites. The catalysts with small crystallites (<6.6 nm) of palladium can be successfully used for mitigation of the emission of methane from coal mine post-ventilation air and, after increasing of the methane concentration to 1–2 vol.%, for its utilization for the energy production. In the case of such catalysts even a high concentration of water vapour has the least negative influence on the catalyst activity and it will not interfere with obtaining of the 100% conversion of methane below 650 °C. 相似文献
18.
The influence of catalyst pre-treatment temperature (650 and 750 °C) and oxygen concentration ( λ = 8 and 1) on the light-off temperature of methane combustion has been investigated over two composite oxides, Co 3O 4/CeO 2 and Co 3O 4/CeO 2–ZrO 2 containing 30 wt.% of Co 3O 4. The catalytic materials prepared by the co-precipitation method were calcined at 650 °C for 5 h (fresh samples); a portion of them was further treated at 750 °C for 7 h, in a furnace in static air (aged samples). Tests of methane combustion were carried out on fresh and aged catalysts at two different WHSV values (12 000 and 60 000 mL g−1 h−1). The catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 were compared with those of two pure Co3O4 oxides, a sample obtained by the precipitation method and a commercial reference. Characterization studies by X-ray diffraction (XRD), BET and temperature-programmed reduction (TPR) show that the catalytic activity is related to the dispersion of crystalline phases, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 as well as to their reducibility. Particular attention was paid to the thermal stability of the Co3O4 phase in the temperature range of 750–800 °C, in both static (in a furnace) and dynamic conditions (continuous flow). The results indicate that the thermal stability of the phase Co3O4 heated up to 800 °C depends on the size of the cobalt oxide crystallites (fresh or aged samples) and on the oxygen content (excess λ = 8, stoichiometric λ = 1) in the reaction mixture. A stabilizing effect due to the presence of ceria or ceria–zirconia against Co3O4 decomposition into CoO was observed. Moreover, the role of ceria and ceria–zirconia is to maintain a good combustion activity of the cobalt composite oxides by dispersing the active phase Co3O4 and by promoting the reduction at low temperature. 相似文献
19.
Mg/Al mixed oxides, obtained by decomposition of hydrotalcite-like precursors, represent interesting heterogeneous catalytic systems for basic-catalyzed reactions, as an alternative to environmentally unfriendly homogeneous catalysts. The reactivity of these oxides was evaluated using the methylation of m-cresol as a test reaction and relationships between catalytic performance and chemical–physical features were established. The basicity of the samples was evaluated by CO 2 adsorption and thermal-programmed-desorption. The presence of Al in the mixed oxides considerably affected the density and the strength of the basic sites with respect to MgO. These basic properties in turn influenced the catalytic performance of the materials. Under the reaction conditions used in the present work, medium strength basic sites played the major role in the reaction. 相似文献
20.
V-based catalysts, widely developed for the catalytic abatement of dioxins, are usually studied and optimized by investigating the oxidation of model chlorinated aromatic compounds (e.g. chlorobenzene). Even though the oxygenated function included in the central aromatic ring of the molecular structure of a dioxin could influence major aspects of the catalytic process, it has never been taken into account in the reported works. In this study, furan is chosen as a model for the central oxygenated ring of a polychlorinated dibenzo furan (PCDF) and its oxidation is compared to the case of chlorobenzene. The strategy was to check systematically if the improvements of formulations enlightened from our previous investigation on chlorobenzene also remain beneficial with furan. It turned out that the use of a sulfate containing TiO 2 as support for the active VO x phase as well as the doping of the formulation with Mo or W oxides had very different impacts in the two cases. Some improvement strategies prove to be inefficient or deleterious in the case of furan. Competition tests further suggest that the adsorption behavior of dioxin could be better imitated by furan than by chlorobenzene. These observations highlight, in the case for which working with the target pollutant is difficult (as with dioxins), that the choice of the model molecule is critical. 相似文献
|