首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A conserved asparagine (Asn 16) buried in the interface of the GCN4 leucine zipper selectively favours the parallel, dimeric, coiled-coil structure. To test if other polar residues confer oligomerization specificity, the structural effects of Gln and Lys substitutions for Asn 16 were characterized. Like the wild-type peptide, the Asn 16Lys mutant formed exclusively dimers. In contrast, Gln 16, despite its chemical similarity to Asn, allowed the peptide to form both dimers and trimers. The Gln 16 side chain was accommodated by qualitatively different interactions in the dimer and trimer crystal structures. These findings demonstrate that the structural selectivity of polar residues results not only from the burial of polar atoms, but also depends on the complementarity of the side-chain stereochemistry with the surrounding structural environment.  相似文献   

2.
One popular model for protein folding, the framework model, postulates initial formation of secondary structure elements, which then assemble into the native conformation. However, short peptides that correspond to secondary structure elements in proteins are often only marginally stable in isolation. A 33-residue peptide (GCN4-p1) corresponding to the GCN4 leucine zipper folds as a parallel, two-stranded coiled coil [O'Shea, E.K., Klemm, J.D., Kim, P.S., & Alber, T.A. (1991) Science 254, 539-544]. Deletion of the first residue (Arg 1) results in local, N-terminal unfolding of the coiled coil, suggesting that a stable subdomain of GCN4-p1 can form. N- and C-terminal deletion studies result in a 23-residue peptide, corresponding to residues 8-30 of GCN4-p1, that folds as a parallel, two-stranded coil with substantial stability (the melting temperature of a 1 mM solution is 43 degrees C at pH 7). In contrast, a closely related 23-residue peptide (residues 11-33 of GCN4-p1) is predominantly unfolded, even at 0 degrees C, as observed previously for many isolated peptides of similar length. Thus, specific tertiary packing interactions between two short units of secondary structure can be energetically more important in stabilizing folded structure than secondary structure propensities. These results provide strong support for the notion that stable, cooperatively folded subdomains are the important determinants of protein folding.  相似文献   

3.
4.
5.
We have investigated the physical nature of the observed coupling energy (Delta Delta DeltaGint) between the charged side-chains of the three inter-helical g<-->e' (i, i'+5) pairs (E<-->R, E<-->K, and E<-->E) in the leucine zipper coiled coil dimer. Circular dichroism (CD) spectroscopy measured the thermal stability of eight proteins derived from the basic region leucine zipper domain of chicken VBP, the mammalian TEF at seven pHs and three KCl concentrations. Data from these proteins were used to construct double mutant alanine thermodynamic cycles and determine coupling energies (Delta Delta DeltaGint) for the three g<-->e' pairs. The attractive E<-->R coupling energy of -0.6 kcal mol-1 at low salt decreases to -0.2 kcal mol-1 at high salt. The E<-->K coupling energy of -0.5 kcal mol-1 at low salt decreases to -0.1 kcal mol-1 at high salt. The repulsive E<-->E coupling energy of +0.8 kcal mol-1 at low salt drops to +0.4 at high salt. Reducing the pH to 2.2 halved the attractive coupling energy for the E<-->R and E<-->K pairs while abolishing the repulsion of the E<-->E pair. 13C NMR of a protein selectively labeled with [13Cdelta]glutamate that contained three E<-->R and one R<-->E pair identified four glutamates shifted upfield. We suggest that this is due to electronic perturbation of glutamates in inter-helical E<-->R interactions. Taken together, these data indicate that the E<-->R coupling energy of -0.5 kcal mol-1 at pH 7.4 and 150 mM KCl has an electrostatic component.  相似文献   

6.
The AMV v-Myb oncoprotein causes oncogenic transformation of myelomonocytic cells in vivo and in vitro. Its transforming capacity is strictly dependent upon the N-terminal DNA binding domain, the central transactivation region, and on the C-terminal domain containing a putative leucine zipper motif. Here we show that the v-MybL3,4A mutant, in which Leu325 and Leu332 of the leucine zipper have been replaced by alanines, failed to induce leukemia in virus infected chicken. This demonstrates that the leucine zipper domain is indispensable for v-myb induced leukemogenesis in vivo. v-MybL3,4A was, however, still able to transform myelomonocytic cells from chicken bone marrow in vitro. Yet, while v-mybL3,4A transformed cells were impaired in growth at 37 degrees C, they failed to grow at 42 degrees C, the physiological body temperature of avian species. This might explain the loss of v-MybL3,4A leukemogenic potential in vivo. We also demonstrate that the v-Myb leucine zipper domain interacts in vitro with two host cell proteins, p26 and p28. This interaction is compromised in v-MybL3,4A indicating that binding of v-Myb to p26 and p28 might be important for the leukemogenic potential of v-Myb.  相似文献   

7.
8.
9.
Drawing on data from a morbidity survey of sampled households in 25 small villages in Espirito Santo, Brazil, this article is concerned with reports of "nerves" (nervos) or nerve problems (problema de nervos). Reported cases of nervos (30 percent of all reports of illness) included a variety of symptoms: insomnia, body pains, dizziness, trembling, weakness, and emotional states ranging from feelings of sadness to anger. In one-third of the accounts, "overwork" was mentioned as the main cause, due both to its direct physical effect and to stress related to economic hardship and responsibility. In 88 percent of the cases, the afflicted person regularly used at least one psychotropic drug to relieve symptoms. Daily use of drugs occurred in 68 percent of the cases, and in 47 percent of cases people were reported as "dependent" on the drugs. The extensive use of psychotropic drugs suggests medicalization of nervos, creating a sick role for patients and keeping at an individual level the problems resulting in nervos.  相似文献   

10.
11.
12.
13.
14.
Using a dimeric bZIP protein, we have designed a leucine zipper that becomes more stable after a serine in the e position is phosphorylated by protein kinase A (delta delta GP = -1.4 kcal mol-1 dimer-1 or -0.7 kcal mol-1 residue-1). Mutagenesis studies indicate that three arginines form a network of inter-helical (i,i' + 5; i, i' + 2) and intra-helical (i, i + 4) attractive interactions with the phosphorylated serine. When the arginines are replaced with lysines, the stabilizing effect of serine phosphorylation is reduced (delta delta GP = -0.5 kcal mol-1 dimer-1). The hydrophobic interface of the leucine zipper needs a glycine in the d position to obtain an increase in stability after phosphorylation. The phosphorylated protein binds DNA with a 15-fold higher affinity. Using a transient transfection assay, we document a PKA dependent four-fold activation of a reporter gene. Phosphorylation of a threonine in the same e position decreases the stability by delta delta GP = +1.2 kcal mol-1 dimer-1. We present circular dichroism (CD) thermal denaturations of 15 bZIP proteins before and after phosphorylation. These data provide insights into the structural determinants that result in stabilization of a coiled coil by phosphorylation.  相似文献   

15.
16.
The central limitation hypothesis postulates that energy budgets are limited by the capacity for energy assimilation. Contradictory evidence from in vitro studies of nutrient uptake capacity of intestinal tissues indicates a margin, however, that could allow a higher rate of energy acquisition than actually measured. As a more direct test, I measured nutrient uptake capacity in vivo. This is possible in animals such as the neotropical nectar-feeding bats (Glossophaginae: Phyllostomidae) that have both rapid gut transit times and high daily metabolic needs. Here, during the steady-state period of feeding, the rate of food intake is equal to the rate of food processing and food egestion. Therefore, the rate of food absorption can be determined directly from the rate of food ingestion. Maximal feeding rates were elicited by limiting the time period available for feeding during the 24-hr day through manipulation of the light/dark (LD) cycle. During 4-hr nights (LD 20:4), sugar intake averaged 488 J/g/hr and was 73% higher than during 12-hr nights (LD12:12). A 16.4-g bat would assimilate 96 kJ/day if feeding at this maximal rate during a regular 12-hr foraging period. This would be sufficient for maintaining a positive energy balance even during extreme physical activity under the natural conditions of its tropical environment. Nutrient assimilation capacity could thus not be identified as the single central factor setting the metabolic ceiling.  相似文献   

17.
Here we describe a system that enables short peptides to bind DNA sequence-specifically. Linking the peptide covalently to DNA through a disulphide bond eliminates the unfavourable energetic cost of diffusion and thus potentiates the peptide-DNA interaction. By this approach we have deconstructed the GCN4/DNA complex into its elemental DNA recognition units. We find that the GCN4 basic region contacts the two half-sites with very different affinities and propose that this thermodynamic asymmetry plays a role in differential regulation of gene expression. Specific binding of the peptide to DNA stabilizes the disulphide bond toward reduction suggesting a novel approach to the discovery of new DNA-binding specificities.  相似文献   

18.
19.
The dimer interface of a leucine zipper involves hydrophobic as well as electrostatic interactions between the component helices. Here we ask how hydrophobic effects and electrostatic repulsion balance the rate of folding and thermodynamic stability of a designed dimeric leucine zipper formed by the acidic peptide A that contains four repeating sequence units, (abcdefg)4. The aliphatic a and d residues of peptide A were the same as in the GCN4 leucine zipper but the e and g positions were occupied by Glu, which prevented folding above pH 6 because of electrostatic repulsion. Leucine zipper A2 was formed by protonation of the e and g side chains with a sharp transition midpoint at pH 5.2. Folding could be described by a two-state transition from two unfolded random coil monomers to a coiled coil dimer. There was a linear relationship between the logarithm of the rate constants and the number of repulsive charges on the folded leucine zipper dimer. The same linear relationship applied to the free energy of unfolding and the number of repulsive charges at thermodynamic equilibrium. Fully protonated peptide A folded at a near diffusion-limited rate (kon = 3 x 10(8) M-1 s-1), and the free energy of folding was -55 kJ mol-1 at 25 degrees C. The present work shows that protonation of Glu in positions e and g increases both the folding rate and the stability of the leucine zipper in the absence of any interhelical electrostatic interactions. Protonated Glu is proposed to act like a nonpolar residue and to strengthen the hydrophobic core by folding back toward the core residues in the a and d positions. This effect adds more to the free energy of unfolding and to the rate of folding than maximizing the number of salt bridges across the helix interface in an electrostatically stabilized heterodimeric leucine zipper [Wendt, H., Leder, L., H?rm?, H., Jelesarov, I., Baici, A., and Bosshard, H. R. (1997) Biochemistry 36, 204-213].  相似文献   

20.
Clathrin self-assembly into a polyhedral lattice mediates membrane protein sorting during endocytosis and organelle biogenesis. Lattice formation occurs spontaneously in vitro at low pH and, intracellularly, is triggered by adaptors at physiological pH. To begin to understand the cellular regulation of clathrin polymerization, we analyzed molecular interactions during the spontaneous assembly of recombinant hub fragments of the clathrin heavy chain, which bind clathrin light-chain subunits and mimic the self-assembly of intact clathrin. Reconstitution of hubs using deletion and substitution mutants of the light-chain subunits revealed that the pH dependence of clathrin self-assembly is controlled by only three acidic residues in the clathrin light-chain subunits. Salt inhibition of hub assembly identified two classes of salt bridges which are involved and deletion analysis mapped the clathrin heavy-chain regions participating in their formation. These combined observations indicated that the negatively charged regulatory residues, identified in the light-chain subunits, inhibit the formation of high-affinity salt bridges which would otherwise induce clathrin heavy chains to assemble at physiological pH. In the presence of light chains, clathrin self-assembly depends on salt bridges that form only at low pH, but is exquisitely sensitive to regulation. We propose that cellular clathrin assembly is controlled via the simple biochemical mechanism of reversing the inhibitory effect of the light-chain regulatory sequence, thereby promoting high-affinity salt bridge formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号