首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-speed CMOS/SOS 4K word/spl times/1 bit static RAM is described. The RAM features a MoSi/SUB 2/ gate CMOS/SOS technology with 2 /spl mu/m gate length and 500 /spl Aring/ thick gate oxide. Performance advantage of SOS over bulk is discussed for the scaled-down MOS LSI with 1-2 /spl mu/m gate. A standard 6-transistor CMOS cell and a two-stage sense amplifier scheme are utilized. In spite of the rather conservative 3.5 /spl mu/m design rule except for the 2 /spl mu/m gate length, the cell size of 36/spl times/36 /spl mu/m, the die size of 3.11/spl times/4.07 mm, and the typical read access and cycle time of 18 ns are achieved. The active and standby power dissipation are 200 mW and 50 /spl mu/W, respectively.  相似文献   

2.
A 16-Mb magnetic random access memory (MRAM) is demonstrated in 0.18-/spl mu/m three-Cu-level CMOS with a three-level MRAM process adder. The chip, the highest density MRAM reported to date, utilizes a 1.42/spl mu/m/sup 2/ 1-transistor 1-magnetic tunnel junction (1T1MTJ) cell, measures 79 mm/sup 2/ and features a /spl times/16 asynchronous SRAM-like interface. The paper describes the cell, architecture, and circuit techniques unique to multi-Mb MRAM design, including a novel bootstrapped write driver circuit. Hardware results are presented.  相似文献   

3.
For a comparison of different single-transistor cell designs and sense/refresh amplifier designs figures of merit are derived from the quasi-static behavior of the memory circuit during sensing. The principles of the different cell designs are discussed. A cell with the most favorable design has been realized with a standard n silicon-gate process sequence and contact photolithography. It uses aluminum word lines of 5 /spl mu/m width and separation, a contact hole with a size of 4 /spl mu/m to 6 /spl mu/m, and diffused bit lines with a width of 4 /spl mu/m. For the 1-mil/SUP 2/ memory cell a sense/refresh amplifier based on the gated flip-flop principle has been realized. The sensitivity of this amplifier, which is determined by the integrated circuit element tolerances is estimated and measured.  相似文献   

4.
Discusses high density CMOS/SOS technology used to develop a fully static 4096-bit RAM with a five-transistor storage cell. Selection of a five-transistor memory cell has reduced the access to the flip-flop storage element to a single word line transistor and bit line. The word line transistor must be able to prevent data altering currents from entering the memory cell at all times except for the write operation. The write operation is enhanced by reducing the bias voltage across the memory cell, thereby making the current needed to alter the cell smaller. Through the use of a 5 /spl mu/m design rule, the memory cell occupies 2913 /spl mu/m/SUP 2/. The 4096-bit static CMOS/SOS RAM contains 22553 transistors in 20 mm/SUP 2/. Organised as 1024 4-bit words, the RAM has a read cycle time of 350 ns and standby power dissipation of 50 /spl mu/W at V/SUB cc/=5 V and temperature of 27/spl deg/C.  相似文献   

5.
A high-performance 256K /spl times/ 1bit DRAM with double-level Al technology is described. It has a small die size of 8.5 /spl times/ 4.0 mm/SUP 2/, an access time of 90 ns, and a soft error rate of less than 1000 FITs. The first and second Al layers are used as bit lines and word lines, respectively. Double-level Al technology is also applied to periphery circuit regions and contributes to a 15 percent reduction of die size in conjunction with a simplified sense-restore circuit. A compact memory cell (10.9 /spl times/ 6.1/spl mu/m /SUP 2/) with a storage capacitance of over 50 fF is obtained through the use of wafer stepping and dry etch techniques.  相似文献   

6.
A fully static 8K word by 8 bit CMOS RAM, with a six-transistor CMOS cell structure to achieve an extremely low standby power of less than 50 nW has been developed. A 2 /spl mu/m, double polysilicon CMOS process was utilized to realize a 19/spl times/22 /spl mu/m cell size. Redundance technology with polysilicon laser fuses was also developed for improving fabrication yield with relatively large chip size, i.e. 5.92/spl times/7.49 mm. In addition, for reducing operational power dissipation while maintaining fully static operation from outside on the chip, an internally clocked low-power circuit technology using row address transition detectors was employed, which results in only 15 mW operational power at 1 MHz by cutting off all DC current paths. The RAM offers an 80 ns address access time.  相似文献   

7.
A PLA of NAND structure, using a NMOS Si gate process, has been developed to minimize chip area and maintain medium fast speed. The smallest memory cell size of 7/spl times/9 /spl mu/m is achieved by using ion implantation for PLA bit programming with 4 /spl mu/m design rules. Dynamic clocking scheme and self-timing circuits which are used in this PLA are described. With PLA size at 20/spl times/20/spl times/20, transistor size of 8 /spl mu/m/4 /spl mu/m, and cell size of 7/spl times/12 /spl mu/m, an internal access time of 150 ns is achieved with an external 4 MHz clock. Measured circuit power dissipation is 20 mW under normal conditions.  相似文献   

8.
New input and output schematics and optimum design for cell and array are proposed, and applied to a 256/spl times/4 bit CMOS static RAM. Simplified decoder circuit with effective decoder control circuit has a high speed and a wide timing margin. Simple sense amplifier and compact output circuit bring higher speed and reduction in pattern area. Using p-channel transfer gate for memory cell and array, the switching speed and operational stability are much improved. The device is fabricated by 5 /spl mu/m layout rule Si-gate CMOS technology. An 80 ns access time and 100 ns minimum cycle time are acquired at 5 V supply. Power dissipation is less than 7.5 mW at 1 MHz operation.  相似文献   

9.
A fast, low-power 32K/spl times/8-bit CMOS static RAM with a high-resistive polyload 4-transistor cell has been developed utilizing a dynamic double word line (DDWL) scheme. This scheme combines an automatic power down circuitry and double word line structure. The DDWL, together with bit line and sense line equilibration, reduces the core area delay time and operating power to about 1/2 and 1/15 that of a conventional device, respectively. A newly developed fault-tolerant circuitry improves fabrication yield without degrading the access time. As for a fabrication process, an advanced 1.2-/spl mu/m p-well CMOS technology is developed to realize the ULSI RAM, integrating 1,600,000 elements on a 6.68/spl times/8.86 mm/SUP 2/ chip. The RAM offers, typically, 46 ns access time, 10 mW operating power and 30 /spl mu/W standby power.  相似文献   

10.
The design and performance of CMOS 256K bit dynamic random access memory devices with 256K/spl times/1 and 64K/spl times/4 output configurations are presented. An advanced CMOS technology, with device scaling to the HMOS-III level, is used to provide effective solutions to critical device and circuit problems in DRAM design and to offer features not previously implemented in NMOS designs. The cell and die area are 70 /spl mu/m/SUP 2/ and 253 mil /spl square/ (6.3 mm /spl square/), respectively. The typical row access time is less than 100 ns. The p-channel memory array used in this design improves the memory refresh characteristics and reduces the soft error rates. The use of static and clocked CMOS circuits provides lower active power, wide operating margins, microwatt standby power, and high column data bandwidth. The 256K bit devices are designed with two output modes, namely, ripplemode and static column mode, selected by a metal mask option.  相似文献   

11.
The single device well (SDW) memory cell, including an access transistor, uses only two SDW MOSFETs, versus four-to-six transistors in conventional static memory cells and thus a great saving in silicon area results. Cell static and dynamic performance are discussed and simulated using an appropriate model implemented in the computer-aided circuit analysis program WATAND. The access time of the new cell is comparable to that of conventional MOSFET cells. Using 3 /spl mu/m technology, an SDW memory cell consumes an area of 600 /spl mu/m/SUP 2/ and has an average power consumption of 10 /spl mu/W at 5 V supply. Another version of the cell using a polyresistor is also discussed.  相似文献   

12.
The 1-Mb RAM utilizes a one-transistor, one-capacitor dynamic memory cell. Since all the refresh-related operations are done on chip, the RAM acts as a virtually static RAM (VSRAM). The refresh operations are merged into the normal operation, called a background refresh, the main feature of the VSRAM. Since the fast operation of the core part of the RAM is crucial to minimize the access-time overhead by the background refresh, 16 divided bit lines and parallel processing techniques are utilized. Novel hot-carrier resistant circuits are applied selectively to bootstrapped nodes for high hot-carrier reliability. N-channel memory cells are embedded in a p-well, which gives a low soft error rate of less than 10 FIT. 1-/spl mu/m NMOSFETs with moderately lightly doped drain structures offer fast 5-V operation with sufficient reliability. An advanced double-level poly-Si and double-level Al twin-well CMOS technology is developed for fast circuit speed and high packing density. The memory cell size is 3.5/spl times/8.4 /spl mu/m/SUP 2/, and the chip size is 5.99/spl times/13.8 mm./SUP 2/. Address access time is typically 62 ns, with 21-mA operating current and 30-/spl mu/A standby current at room temperature.  相似文献   

13.
A Hi-CMOSII static RAM with 8K word by 8 bit organization has been developed. The RAM is fabricated using double polysilicon technology and p- and n-channel transistors having a typical gate polysilicon length of 2 /spl mu/m. The device was realized using low-power high-speed-oriented circuit design and a new redundancy circuit that utilizes laser diffusion programmable devices. The new RAM has an address access time of 65 ns, operating power dissipation of 200 mW, and standby dissipation of 10 /spl mu/W.  相似文献   

14.
A high-speed 1-Mb MASK ROM incorporating a new through-hole programmed memory cell, named THOLE CELL, and a full CMOS static sense amplifier is described. The ROM has been fabricated using a double-polysilicon p-well CMOS technology. As a result of achieving a compact ROM cell that is as small as 5.2-/spl times/6.4 /spl mu/m/SUP 2/, even with relatively conservative 2.0 /spl mu/m design rules, a small die size of 7.08/spl times/7.7 mm/SUP 2/ is realized. The ROM organization is 128K/spl times/8 bit and has a typical access time of 80 ns. A typical active current of 8 mA is achieved, in spite of the fully static system. This ROM offers high speed and low power characteristics, while achieving small die size and short turnaround time.  相似文献   

15.
The area of static MOS memory cells is reduced by avoiding crossovers in the flip-flop, and by selecting the cell by a diode. Such cells have been realized in epitaxial silicon films on insulators (ESFI) with complementary transistors, diodes, and high-rated load resistors; the cell areas can be as small as 1500 /spl mu/m/SUP 2/ (2.4 mil/SUP 2/), and are the smallest areas of static MOS memory cells known so far. The static and dynamic behavior of these cells are discussed, as well as their behavior in a large-scale integrated (LSI) circuit; for this purpose an exploratory memory with 4096 bits and with simple decoding and sensing circuitry has been realized on an area of 3.5/spl times/4.2 mm (140/spl times/170 mils). Taking into account the measured data, an ESFI MOS memory circuit shows a better performance in speed and power dissipation than dynamic MOS memories, but its principal advantage is the static operation mode.  相似文献   

16.
A 32K/spl times/8-bit CMOS static RAM using titanium polycide technology has been developed. The RAM has a standby power of 10 /spl mu/W, an active power of 175 mW, and an access time of 55 ns. The standby power has been achieved by an optimization of polysilicon resistors in a memory cell. A digit line circuit controlled by three internal clocks contributes to reduction of active power. The cell size has been reduced to 89.5 /spl mu/m/SUP 2/ by using both a buried isolation and a polycide GND line. Furthermore a simplified address-transition detection circuit and a single data bus configuration result in a small layout area, thus offering a 40.7 mm/SUP 2/ die size.  相似文献   

17.
A single-transistor memory cell in Al-gate technology with 2.5 /spl mu/m line width with a new circuit configuration is introduced. In this cell, the ground line of one cell and the word line of the cell opposite the bit line share the same line. This circuit configuration leads to memory cells having a bit density of 5720 bit/mm/SUP 2/ even though it uses a single layer metallization. The voltage conditions in this cell differ from those in conventional storage cells, but do not reduce the operation range of the new cell. As design and circuit studies have shown, a 32 kbit memory can be realized on a chip area of about 15.4 mm/SUP 2/, having an access time of 200 ns and a power dissipation of 500 mW.  相似文献   

18.
An advanced DSA MOS (DMOS) technology is discussed as it applies to a high-speed 4K bit semiconductor static memory. It uses a polysilicon gate length of 4 /spl mu/m, a gate oxide thickness less than 800 /spl Aring/, and a shallow junction depth (<0.6 /spl mu/m) using conventional photolithographic methods. With these features, the effective channel length of the DSA MOST was reduced to 0.5 /spl mu/m and a smaller junction capacitance was obtained by the use of a high-resistivity (100-200 /spl Omega/.cm) substrate without a substrate bias generator. Combined with the depletion load transistors and selective oxidation processing, a static RAM of 50 ns access time at 630 mW power dissipation, die size of 5.24/spl times/5.36 mm/SUP 2/, and cell size of 53/spl times/62 /spl mu/m/SUP 2/ was obtained.  相似文献   

19.
A new CMOS static memory cell, called the double-lambda diode (DOL), is described. It offers the speed and the power dissipation advantages of conventional CMOS static memory cells at half the area. The cell uses complementary depletion MOS devices. The processing technology is based on a twin-tub CMOS process. Using 2.5 /spl mu/m design rules the cell area is 500 /spl mu/m/SUP 2/. In addition, a 300 /spl mu/m/SUP 2/ single-lambda diode (SIL) cell using a poly resistor as a load is discussed. Comparisons of these cells with other MOS static memory cells are presented.  相似文献   

20.
A 64 kbit fully static MOS RAM which contains about 402500 elements on the chip area of 5.44/spl times/5.80 mm has been designed. The memory cell is a basic cross-coupled flip-flop with four n-MOSFETs and two polysilicon load resistors. The memory cell size is decreased to 16/spl times/19 /spl mu/m (304 /spl mu/m/SUP 2/) by using advanced n-MOS technology with double-level polysilicon films and photolithography of 2 /spl mu/m dimensions. By applying n-well CMOS technology fabricated on a high-resistivity p-type silicon substrate to peripheral circuits of the RAM, high performance characteristics with high speed access times and low power dissipation are obtained. The RAM is designed for single 5 V operation. Address and chip select access times are typically 80 ns. Power dissipation in the active and standby mode is typically 300 and 75 mW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号