共查询到20条相似文献,搜索用时 46 毫秒
1.
基于风速历史数据统计法和基于地理信息与数值预报的物理方法都不能经济、有效、准确地对超短期风速做出预测。为了满足超短期风速预测的时效性和准确性,提出了基于风速历史数据和周边风速数据的风速时空信息BP神经网络超短期风速预测的思想,并研究了基于风速时空信息BP神经网络风速预测模型。建立基于MATLAB平台的BP神经网络预测程序,并实例验证了基于风速时空信息BP神经网络风速预测方法具有更高的精确度、时效性和经济性。 相似文献
2.
风速预测对于风力发电并网调度至关重要。基于BP神经网络建立了风速预测模型,并从BP算法及遗传算法自身特点出发,针对BP网络结构确定困难、收敛速度慢等问题,提出创建多种群遗传算法,实现对BP神经网络的结构和权值初始值的同步优化。通过具体算例表明,经优化后的BP算法的收敛步数和计算时间明显减少,预测精度更高,网络整体性能有了显著提高。 相似文献
3.
4.
5.
6.
7.
本文以城建国际大厦冷源系统的检测数据为依据,利用BP神经网络,建立了空调负荷预测模型,并取得了较好的结果。文章进一步分析了可能存在的误差及提高预测精度的方法。 相似文献
8.
根据光伏组件的构成,将影响组件价格的因素分为技术因素和非技术因素,并采用网站数据采集法和专家咨询法确定各主要因素的分项价格,构建BP神经网络预测模型,在此基础上利用Matlab内置的Neural Net Fitting模块对组件价格进行预测,结果表明BP神经网络对组件价格预测的相关性较好,预测价格与实际价格偏差率为-2.62%~2.11%,预测结果可接受度为89.47%,预测精度满足实际需要,为光伏项目的顺利实施提供了辅助决策依据。 相似文献
9.
数值天气预报(NWP)是影响风电场超短期预测精度的主要因素。采用数据挖掘技术中的主成分分析方法,对位于一个风电场多个位置的NWP各指标数据进行主成分提取,获取几个综合指标,使得新的输入变量维数降低,分量间相关性减小。在此基础上,利用BP神经网络和泛化回归神经网络(GRNN)建立超短期风速预测模型,实验结果显示,基于主成分分析提取的GRNN预测模型预测精度更高。 相似文献
10.
为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠和虚假分量产生的优点,使用SSD分解风速序列,提取多尺度规律;最后,由于LSTM神经网络捕捉长时间依赖的序列的波动规律的能力较强,使用LSTM神经网络对分解后的风速分量进行预测,将各分量预测值叠加得到最终预测结果。实验结果表明,基于PAM-SSD-LSTM的组合预测模型可有效提高风速短期预测的准确率。 相似文献
11.
12.
基于小波变换与Elman神经网络的短期风速组合预测 总被引:1,自引:0,他引:1
风速的准确预测对风电场发电系统的经济和安全运行有着重要的作用。为了克服风速随机性强的缺点,提高短期风速预测的精度,提出了一种将小波变换与Elman神经网络相结合的短期风速组合预测模型。该模型由小波预处理模块和神经网络预测模块组成。首先利用小波预处理模块将风速序列作多尺度分解,重构得到不同频段的子序列,然后利用Elman神经网络模块分别对其训练和预测。实际风速预测结果表明,与单一的Elman和ARMA法相比,该组合预测模型的预测精度有较大的改善,可以用于风电场短期风速的预测。 相似文献
13.
针对基于支持向量机的风电场短期风速预测进行研究.选择了不同的输入向量(历史风速时间序列,历史风速和温度.历史风速、温度和风向,历史风速、温度和时间)作为输入进行误差对比分析。实测数据及分析结果表明,采用历史风度和温度的二输入模型,预测效果最佳,为风速的短期预测和发电量预测提供了较好的参考价值。 相似文献
14.
介绍了两种风电场风速预测模型,分别是BP神经网络模型和小波-BP神经网络组合模型。BP神经网络模型是风速预测中常用的模型之一,小波技术和BP神经网络结合,即为组合模型。小波技术将风速时间序列按时间和频率两个方向展开,体现了各成分对预测值贡献率的不同。将BP神经网络模型和小波-BP神经网络组合模型分别应用到我国朱日和风电场的逐时风速预测中,从预测结果对比得出组合模型更适合该风电场的逐时风速预测。 相似文献
15.
16.
Da Fang 《国际可持续能源杂志》2017,36(5):415-429
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation. 相似文献
17.
Wind speed is the major factor that affects the wind generation, and in turn the forecasting accuracy of wind speed is the key to wind power prediction. In this paper, a wind speed forecasting method based on improved empirical mode decomposition (EMD) and GA-BP neural network is proposed. EMD has been applied extensively for analyzing nonlinear stochastic signals. Ensemble empirical mode decomposition (EEMD) is an improved method of EMD, which can effectively handle the mode-mixing problem and decompose the original data into more stationary signals with different frequencies. Each signal is taken as an input data to the GA-BP neural network model. The final forecasted wind speed data is obtained by aggregating the predicted data of individual signals. Cases study of a wind farm in Inner Mongolia, China, shows that the proposed hybrid method is much more accurate than the traditional GA-BP forecasting approach and GA-BP with EMD and wavelet neural network method. By the sensitivity analysis of parameters, it can be seen that appropriate settings on parameters can improve the forecasting result. The simulation with MATLAB shows that the proposed method can improve the forecasting accuracy and computational efficiency, which make it suitable for on-line ultra-short term (10 min) and short term (1 h) wind speed forecasting. 相似文献
18.
为了提高风速预测的准确性,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)二次分解和长短时记忆(LSTM)网络的风速多步预测方法。该方法首先应用变分模态分解(VMD)将原始风速序列进行一次分解,充分利用其分解后的残余分量并采用CEEMDAN方法进行二次分解;然后将分解后的所有子序列分别输入到LSTM模型中进行风速多步预测;最后将各模型输出结果进行叠加获得预测风速。以内蒙古某风电场实测数据为例进行建模和预测分析,结果表明所提出的风速多步预测模型具有较高的预测精度,具备实际应用的可行性。 相似文献
19.
This paper presents a new strategy for wind speed forecasting based on a hybrid machine learning algorithm, composed of a data filtering technique based on wavelet transform (WT) and a soft computing model based on the fuzzy ARTMAP (FA) network. The prediction capability of the proposed hybrid WT+FA model is demonstrated by an extensive comparison with some other existing wind speed forecasting methods. The results show a significant improvement in forecasting error through the application of a proposed hybrid WT+FA model. The proposed wind speed forecasting strategy is applied to real data acquired from the North Cape wind farm located in PEI, Canada. 相似文献
20.
随着风电机组装机容量的持续高速增加以及大规模风电场的建设,各个国家(地区)的电网对风电的重视程度也在增加,风电场发电功率的短期预测对于风电场并网以及电网的调度起着至关重要的作用。通过对风电场发电功率的时间序列进行分析,表明该序列具有混沌属性,并在此基础上,利用相空间重构理论建立了关于风力发电功率的RBF神经网络与BP神经网络预测模型,并进行了实际预测。通过对结果进行对比分析,显示该模型可以得到较高的短期发电功率预测精度,更好地满足实际现场需要。 相似文献