首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A method of molecular dynamics is used to investigate friction anisotropy observed on a hexagonally packed organic monolayer of straight-chain molecules, which tilt in a specific direction. A rigid gold slider with a single atomic protuberance is used as a model of a typical atomic force microscope tip apex. The friction anisotropy is observed at 50 K, which is below the melting point of rotation around a long axis of the molecule. The anisotropic frictional behavior is that sliding in directions normal to the direction of the collective tilt of the molecules results in the maximum friction force. The origin of the anisotropy is attributed to anisotropy in lateral compliance in the monolayer.  相似文献   

2.
Gourdon  D.  Burnham  N.A.  Kulik  A.  Dupas  E.  Oulevey  F.  Gremaud  G.  Stamou  D.  Liley  M.  Dienes  Z.  Vogel  H.  Duschl  C. 《Tribology Letters》1997,3(4):317-324
We performed lateral force microscopy on thiolipid Langmuir-Blodgett (LB) films physisorbed on mica substrates with asilicon tip of an atomic force microscope. The structure ofcondensed domains, reflecting their symmetric morphology, wasobserved. The lateral (friction) forces were measured as a function of (normal) applied load, of sliding velocity and of themolecular orientation of these films. We found that at a fixedvelocity, lateral force increases with applied load in a linearfashion. Within the velocity range 0.01 to~50m/s, the lateral force signal initiallyincreases monotonically with velocity (static regime) and thenstabilises when the tip begins sliding. The friction force andthe observed asymmetry in the quasi-static ``friction-loops'(torsion of the tip during a forward/reverse scan) were foundto be dependent on the domain orientation with respect to the scan direction, while the measured adhesive force remainedconstant. Together, friction and asymmetry reveal and mapmolecular packing and tilt.  相似文献   

3.
This paper presents a study on the frictional anisotropy of semi-crystalline UHMWPE polymer film deposited on DLC-overcoated Si substrate. For UHMWPE film slid against a silicon nitride ball, there is a remarkable difference in the coefficient of friction between the forward and reverse directions after the slider has been initially slid against the film for certain number of cycles. The changes in the friction are greatly influenced by the initial number of sliding cycles. This frictional behavior is explained in terms of crystallinity change and molecular orientational effects on UHMWPE and micro-topographical effects due to the initial sliding. Nanoscratch test is conducted to understand the friction of the polymer film in the sliding track and the data are compared with the macroscale friction data. The results show that the friction in the reverse of the initial sliding direction is high in comparison to that in the forward direction and this behavior mainly depends upon the number of initial sliding cycles. The initial sliding cycles affect the crystallinity and molecular orientation of the film, as well as the film topography. This combined effect on the polymer film results in an anisotropic frictional behavior of the film.  相似文献   

4.
采用Berkovich压头,在纳米压痕仪上对K9光学玻璃进行了变切深纳米刻划试验。为探究摩擦因数与脆塑转变的深度,基于非线性最小二乘法对法向力、切向力关于刻划深度进行了拟合,并利用相关系数r检验其可靠性。利用AFM和SEM对刻划沟槽表面形貌进行分析,刻划过程存在弹塑转变、塑性去除和脆性断裂三个阶段。基于Hertz接触理论求得K9玻璃弹塑转变深度,根据AFM和SEM的结果,以裂纹刚开始萌生作为脆塑转变点,获得脆塑转变的临界深度。基于脆塑转变深度,通过添加修正系数,改进WEI提出的脆塑转变表征方法,建立了用摩擦因数来表征K9玻璃脆塑转变的表达式。通过分析压头在刻划过程中与工件产生的摩擦区,对脆性断裂阶段裂纹的产生和裂纹方向与刻划方向近似呈60°进行了解释。  相似文献   

5.
冷连轧机轧制力的影响因素   总被引:3,自引:0,他引:3  
通过将轧制变形区划分为微单元,对变形区内轧制力影响因素的变化规律进行研究。根据微单元塑性变形方程式,建立单位轧制压力的计算模型。针对变形抗力、摩擦因数等非线性因素,建立基于神经网络校正系数和工作参考点方法的数学模型,分析其在变形区内的变化规律。针对轧辊压扁和轧制力计算的耦合现象,采用计算机迭代计算的模型完成轧制力的解耦计算。工业轧机实际数据验证了采用微单元方式计算轧制力预报精度高,可用于生产实践。  相似文献   

6.
针对Ga As基半导体激光芯片谐振腔面的超精密解理制造技术需求,开展GaAs材料解理加工分子动力学仿真及加工工艺实验研究。首先建立Ga As材料划片过程的分子动力学模型,研究[100]和[110]晶向的表面微观形貌及亚表面损伤深度,分析材料各向异性对划片形貌的影响机制;然后开展解理工艺实验对MD模型进行了验证,并分析解理面形貌的变化情况。仿真结果表明:相比于[100]晶向,[110]晶向上最大损伤宽度、划片宽度和亚表面损伤深度平均值分别降低5.23%、3.98%和2.61%,沿该晶向所得划片质量更优,此外最大损伤宽度、划片宽度和亚表面损伤深度均随划片深度增加而增加,而划片速度对Ga As表面形貌及亚表面损伤影响较小;通过工艺实验验证了MD仿真结果,并确认[110]为Ga As最佳解理加工晶向。  相似文献   

7.
T. Sakamoto  T. Tsukizoe 《Wear》1978,48(1):93-102
The initial scratching of soft metals by relatively hard metallic asperities involves considerable plastic deformation and wear of the harder metal. Thus the penetration effect on friction is reduced successively as sliding proceeds, leading to the shearing type of friction. Such a transition state of sliding can be defined as a quasi-scratch friction process because ploughing precedes the steady sliding condition.The deformation and wear behaviour at a friction junction was investigated using model experiments between a mild steel conical rider and a flat copper surface. Changes in geometry of the rider and pile-up of the flat metal were examined metallographically and with a microscope. It was found that a stable value of the friction force is determined from the geometric shape of the junction attained after the completion of transient sliding and the effect of initial asperity shape on the friction force becomes insignificant.  相似文献   

8.
MD simulation of indentation and scratching of single crystal aluminum   总被引:5,自引:0,他引:5  
Molecular Dynamics (MD) simulations of indentation and scratching have been conducted on single crystal aluminum in various crystal orientations and directions of scratching to investigate the anisotropy in hardness and friction. Depending on the crystal orientation, the atoms near the surface are found to be disturbed to different degrees due to repulsive forces between them as the indenter approaches the workmaterial. The hardness is found to increase significantly as the indentation depth is reduced to atomic dimensions. The calculated values of hardness are found to be an order of magnitude higher (and close to theoretical strength) than the corresponding engineering values which can be expected considering the size effect possible at indentation depths of a few nanometers or less. It thus appears that at very low depths of indentation (or nanoindentation), the plastic deformation underneath the indenter is governed by the theoretical yield strength of the material. The anisotropy in hardness and friction coefficient of single crystal aluminum with different crystal orientations and scratch directions is found to be in the range of 29%, which is close to the value of its anisotropy in the elastic range (21.9%) (stiffest in 111 and least stiff in 100) [R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th edn., Wiley, 1996, p. 14]. A similar observation was made in a recent investigation on the nanometric cutting of single crystal aluminum [R. Komanduri, N. Chandrasekaran, L.M. Raff, M.D. Simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting, 1998, accepted for publication in Wear]. Among the orientations investigated, hardness is maximum in (001)[100] and minimum in (01 )[221]. Friction coefficient values are found to be higher (0.6–0.9) with the maximum along (001)[ 10] and minimum along (110)[ 10]. The [ 10] scratch direction represents the close packed direction for aluminum. The minimum and the maximum scratch hardness are observed with (111)[ 10] and (111)[ 11] crystal orientations. Although, similarities are found between nanoindentation and scratching, and nanometric cutting, the rake angle effect is found to be dominated by the large negative rake angle presented by the indenter in the former case.  相似文献   

9.
基于划痕法制备的微织构硬质合金摩擦磨损试验研究   总被引:1,自引:0,他引:1  
采用尖端球半径10μm、锥角120°的金刚石压头在硬质合金(YG6)表面制备了划痕宽度为10~50μm的微织构,并采用球盘式摩擦磨损试验方法进行了微织构化硬质合金的摩擦磨损试验,对摩擦磨损试验过程的摩擦力与摩擦因数进行了在线测量,并用超景深电子显微镜与扫描电镜对微织构形貌与摩擦磨损形貌进行了显微观察。试验结果表明,采用金刚石压头划痕法制备硬质合金微织构是可行的,并且硬质合金微织构有助于降低摩擦因数,当织构方向与摩擦磨损运动方向垂直时,微织构对硬质合金摩擦磨损特性的改善效果最好。  相似文献   

10.
Scratching maps for polymers   总被引:7,自引:0,他引:7  
The scratching technique has gained interest in recent times due to its varied applications to a number of engineering materials, especially for the evaluation of surface scratch resistance of plastics. Scratching provides a convenient and reliable means to investigate the mechanical properties of organic polymers under various contact conditions. The scratch hardness method is widely adopted to provide a first-order evaluation of the relative scratch resistance of materials for comparison purposes. The method also allows the identification and the assessment of the surface deformation processes and maps defining the scratch deformation modes as a function of contact conditions may be generated. These scratching maps may present experimental results in terms of the deformation mechanism, the scratch hardness and the friction coefficient. This paper primarily provides a review of the application of scratching maps for polymers. Results for the scratch hardness and the deformation mechanisms for a poly(methylmethacrylate) (PMMA), a poly(tetrafluoroethylene) (PTFE) and an ultra-high molecular weight poly(ethylene) (UHMWPE) are presented. The PTFE system is also described following the effects of γ-irradiation; radiation produces a marked reduction in toughness. The scratches were produced on the polymer surfaces by cones and spheres of various size under a number of contact conditions (e,g, applied normal load, strain, scratch velocity, etc.). SEM imaging and laser profilometry are used for the study of the deformation mechanisms and the measurements of the scratch profiles. It is shown that polymers exhibit a wide range of scratch deformation characteristics and that the deformation mechanism is determined by the most efficient energy dissipation process for the particular external constraints.  相似文献   

11.
The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which develops in a ship bottom raking accident or a collision with a floating object. The deformation involves a complex mixture of large plastic deformations, fracture and friction. The observed mode of deformation is idealised by a simplified, kinematically admissible deformation mode, and the rate of internal energy dissipation in plasticity, fracture and friction is quantified accordingly by analytical expressions. The idealised mode has two free parameters which are determined from the postulate that they adjust to give the least rate of energy dissipation. The theory is compared to a series of measurements. The coefficient of friction was not measured, so the calculations are presented for different realistic values and it is shown that, for a coefficient of friction of about 0.2, there is a reasonably good agreement between theory and measurements for the in-plane resistance force as well as for the out-of-plane reaction force.  相似文献   

12.
H型钢轧制过程摩擦力分布的数值分析   总被引:2,自引:0,他引:2  
为了分析万能法轧制H型钢过程中不同接触区内摩擦力分布的规律,利用数值模拟法建立了H型钢的轧制模型。以铅为坯料,在给定轧制规程的前提下,系统地模拟了H型钢轧制的全过程;分析了翼缘和腹板变形区的长度、宽度等参数;最终获得了稳态轧制过程中摩擦力在不同接触区域内的矢量分布规律。研究结果表明:H型钢翼缘表层金属受到的摩擦力的方向指向变形区的中部,翼缘变形区存在前滑区和后滑区;H型钢腹板表面金属受到的摩擦力的方向一致,与轧制的方向相反,使得接触区基本为后滑区。  相似文献   

13.
Ripples in graphene monolayers deposited on SiO(2)∕Si wafer substrates were recently shown to give rise to friction anisotropy. High friction appears when the AFM tip slides in a direction perpendicular to the ripple crests and low friction when parallel. The direction of the ripple crest is, however, hard to determine as it is not visible in topographic images and requires elaborate measurements of friction as a function of angle. Here we report a simple method to characterize ripple crests by measuring the cantilever torsion signal while scanning in the non-conventional longitudinal direction (i.e., along the cantilever axis, as opposed to the usual friction measurement). The longitudinal torsion signal provides a much clearer ripple domain contrast than the conventional friction signal, while both signals show respective rotation angle dependences that can be explained using the torsion component of the normal reaction force exerted by the graphene ripples. We can also determine the ripple direction by comparing the contrast in torsion images obtained in longitudinal and lateral scans without sample rotation or complicated normalization.  相似文献   

14.
Yasuhisa Ando 《Wear》2003,254(10):965-973
Conditions (normal load, sliding speed, ambient conditions, and material) to obtain the lower friction coefficient were studied by measuring the friction and pull-off forces between a metal pin (copper or gold) and a plate (steel or single crystal silicon). First, a pin was rubbed against a plate under a normal load between −12 and 870 μN at a sliding speed between 0.012 and 9.6 μm/s. The friction force was measured during reciprocating sliding motion. The pull-off force was measured before and after each friction force measurement. All the force measurements were taken in high vacuum at 10−5 Pa, dry argon at 1 atm, and ambient humid air of 38 and 60% relative humidity. Then, the friction coefficient was calculated by dividing friction force by the sum of normal load and pull-off force. In high vacuum, when a copper pin was rubbed against either a silicon or steel plate, the friction coefficient decreased to less than 0.05 with decreasing sliding speed. The effect of sliding speed on the friction coefficient suggests that under a low normal load the viscous resistance of liquid contributed to the friction force. When a gold pin was rubbed against a silicon plate, the friction coefficient was not affected by sliding speed.  相似文献   

15.
超声马达各向异性摩擦材料性能的试验研究   总被引:3,自引:1,他引:2  
曲建俊  曲焱炎  肖殿东 《润滑与密封》2007,32(11):133-136,169
根据超声马达对摩擦材料切向和纵向性能的不同要求,采用在酚醛树脂胶中添加玻璃丝布和玻璃纤维增强的方法制备出不同弹性模量匹配的各向异性摩擦材料,并对其性能进行了测试。结果表明:当摩擦材料垂直方向与水平方向的弹性模量的比值为0.71~1.42时,摩擦材料受振动头的正压力和驱动力先增大后减小,比值为1.24时,马达的正压力和驱动力最大,驱动效果最好。  相似文献   

16.
This paper presents the theoretical modeling and numerical simulation of the probe tip based nanochannel scratching. According to the scratching depth, the probe tip is modeled as a spherical capped conical tip or a spherical capped regular three side pyramid tip to calculate the normal force needed for the nanochannel scratching. In order to further investigate the impact of scratching speed, scratching depth and scratching direction on the scratching process, the scratching simulation is implemented in LS-DYNA software, and a mesh-less method called smooth particle hydrodynamics (SPH) is used for the sample construction. Based on the theoretical and simulated analyses, the increase of the scratching speed, the scratching depth and the face angle will result in an increase in the normal force. At the same scratching depth, the normal forces of the spherical capped regular three side pyramid tip model are different in different scratching directions, which are in agreement with the theoretical calculations in the d3 and d4 directions. Moreover, the errors between the theoretical and simulated normal forces increase as the face angle increases.  相似文献   

17.
The friction behavior of the nanoscratching process is investigated using molecular dynamic simulations by considering a sphere indenter sliding against a nickel nanofilm structure. In the film/substrate system, the interface-dominated friction process is studied during the nanoscratch process. The results indicate that the interface accommodates deformation during the scratch by absorbing plastic deformation (such as stacking faults and partial dislocations) and by allowing locally interface slip. The observed local material shuffling beneath the tip that was strongly affected by the interface and friction mechanisms, including material ploughing along the track, filling in of the track, and piling up of the chip in front of the tip, are discussed. The combination effects of both scratching depths and film thicknesses were also investigated.  相似文献   

18.
Microscratch tests were carried out on Cu–graphite composites with graphite content of 0–30 vol% and normal loads of 0.5–2 N. Scratch grooves generated by the plastic deformation of surfaces were characterized for detailed friction and wear mechanisms investigation. The influence of normal load and graphite content on friction coefficient was also studied. It is found that the dominant wear mechanism transits from ploughing to micro-cutting with increasing the normal loads. A friction model for knowing the contribution of ploughing and adhesion components to friction is presented. This friction model is useful in understanding the friction mechanism of composites during scratching.  相似文献   

19.
The secondary motion of the piston head of a motorized engine is captured using two laser displacement sensors to obtain the piston motion and tilt angle. The controlled parameters of the measurement are engine speed, quantity of oil and oil-fuel mixture and its ratio. The reduction in friction force is more significant at dead center at high speed as the quantity of oil supplied increases. Changes in tilt direction of piston head occur at the inlet port. The relationship between the friction force and piston tilt angle showed weak correlation at low speed and increases with the engine speed.  相似文献   

20.
Friction Study of a Ni Nanodot-patterned Surface   总被引:3,自引:0,他引:3  
Nanoscale frictional behavior of a Ni nanodot-patterned surface (NDPS) was studied using a TriboIndenter by employing a diamond tip with a 1 μm nominal radius of curvature. The Ni NDPS was fabricated by thermal evaporation of Ni through a porous anodized aluminum oxide (AAO) template onto a Si substrate. Surface morphology and the deformation of the NDPS were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), before and after friction/scratch testing. SEM images after scratching clearly showed that, similar to what was assumed at the macroscale, the frictional force is proportional to the real area of contact at the nanoscale. It was found that adhesion played a major role in the frictional performance, when the normal load was less than 20 μN and plastic deformation was the dominant contributor to the frictional force, when the normal load was between 60 μN and 125 μN. Surprisingly, a continuum contact mechanics model was found to be applicable to the nanoscale contact between the tip and the inhomogeneous Ni NDPS at low loads. The coefficient of friction (COF) was also found to depend on the size of the tip and was four times the COF between a 100 μm tip and the Ni NDPS. Finally, the critical shear strength of the Ni nanodots/Si substrate interface was estimated to be about 1.24 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号