首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ni-based superalloys are used for high-temperature components of gas turbines in both industrial and aerospace applications due to their ability to maintain dimensional stability under conditions of high stress and strain. The oxidation resistance of these alloys often dictates their service lifetime. This study focuses on the isothermal oxidation behavior of three Ni-based superalloys, namely, polycrystalline cast IN738LC, single-crystal N5, and a ternary Ni-Fe-Cr (TAS) powder metallurgy alloy. The isothermal oxidation tests were conducted at 900 °C in the static air up to 1000 h, and the specific aspects studied were the oxidation behavior of these chromia-forming and alumina-forming alloys that are used extensively in industry. In particular, the behavior of oxide scale growth and subsurface changes were analyzed in detail using various techniques such as SEM, EDS, and AFM. From the isothermal oxidation kinetics, the oxidation rate constant, k p, was calculated for each alloy and found to be; k p = 2.79 × 10?6 mg2 cm?4 s?1 for IN738LC, k p = 1.42 × 10?7 mg2 cm?4 s?1 for N5 and k p = 1.62 × 10?7 mg2 cm?4 s?1 for TAS. Based on a microstructural analysis, IN738LC exhibited a continuous dense outer scale of Cr2O3 and discontinuous inner scale of Al2O3, whereas N5 and TAS showed a dense outer scale of Al2O3 alone. The results suggested that the N5 and PM-TAS alloys are more oxidation resistant than the IN738LC under these conditions.  相似文献   

2.
Hot deformation behavior and processing maps of the 2099 Al-Li alloy are investigated by tensile test at the temperature range from 250 to 450 °C and the strain rate range from 0.001 to 5.0 s?1. The typical true stress-true strain curves show that the flow stress increases with increasing the strain rate and decreasing the deforming temperature. All curves exhibit rapid work hardening at an initial stage of strain followed by remarkable dynamic softening. Based on the flow stress behavior, the processing maps are calculated and analyzed according to the dynamic materials model (DMM). The processing maps exhibit an instability domain in the temperature and strain rate ranges: T = 250-260 °C and \(\dot{\upvarepsilon }\)  = 0.1-0.5 s?1. The maps also exhibit an optimum hot working condition in the stability domain that occurs in the temperature of 400 °C for a strain rate of 0.001 s?1 and having a maximum efficiency of 60%. The microstructural examinations exhibit the occurrence of dynamic recovery (DRV) during hot deformation of the 2099 alloy which is the dominant softening mechanism in the alloy. The fracture behavior changes from a brittle fracture to a ductile fracture as strain rate decreases and temperature increases.  相似文献   

3.
The aim of this work is to develop a constitutive model that can predict the flow behavior of pure Ti with different interstitial concentrations and grain sizes. To build a database required for identifying material constants, three different grades of Ti were subjected to tensile tests at temperatures of 223, 300, 473, 673 or 773 K and at a fixed strain rate of 10?3 s?1. In the modeling procedure, the mechanical threshold stress model was further modified to capture both the hardening effects attributed to the changes in equivalent oxygen concentration (O eq ) and the softening effect caused by deformation heating at high strain rates. The developed model can reasonably predict the flow behavior of pure Ti having different O eq (0.14–0.32 wt%), and grain size (14.5–90 μm) over a temperature range of 135 to 673 K, and a strain rate range of 2×10?4 to 1400 s?1.  相似文献   

4.
Flow behavior of aluminum-5 wt.% boron carbide (Al-B4C) composite was investigated by carrying out compression tests over a range of strain rates (10?4-100 s?1) and temperatures (200-500 °C). The flow stress data obtained from these tests at true strain 0.5 were used to develop processing map. The stable and instable flow regimes in the map were characterized by the microstructural examination using Scanning Electron Microscopy and Electron Backscattered Diffraction. The optimum condition for processing of Al-5%B4C composite was found to lie between 425 and 475 °C at the strain rate of around 10?4 s?1. A strain-compensated Sellars-McG Tegart constitutive equation was established to model high-temperature deformation behavior of the material.  相似文献   

5.
A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range ?30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10?3 to 1 s?1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type $ \dot{\upvarepsilon } = A\sinh (\upalpha /\upsigma )^{n} \exp ( - Q/RT) $ .  相似文献   

6.
Hot compression behavior of Al6061/Al2O3 nanocomposite was investigated in the temperature range of 350–500 °C and the strain rate range of 0.0005–0.5 s?1, in order to determine the optimum conditions for the hot workability of nanocomposite. The activation energy of 285 kJ/mol for the hot compression test is obtained by using hyperbolic sine function. By means of dynamic material model (DMM) and the corresponding processing map, safe zone for the hot workability of AA6061/Al2O3 is recognized at temperature of 450 °C and strain rate of 0.0005 s?1 and at temperature of 500 °C and the strain rate range of 0.0005–0.5 s?1, with the maximum power dissipation efficiency of 38%. Elongated and kinked grains are observed at 400 °C and strain rate of 0.5 s?1 due to the severe deformation.  相似文献   

7.
Thermal stability of nanocrystalline Al?10wt.%Fe?5wt.%Cr bulk alloy was investigated. The initial micro-grained mixture of powders was processed for 100 h using mechanical alloying (MA) to produce nano-grained alloy. The processed powders were sintered using high frequency induction heat sintering (HFIHS). The microstructures of the processed alloy in the form of powders and bulk samples were investigated using XRD, FESEM and HRTEM. Microhardness and compression tests were conducted on the bulk samples for evaluating their mechanical properties. To evaluate the thermal stability of the bulk samples, they were experimented at 573, 623, 673 and 723 K under compression load at strain rates of 1×10?1 and 1×10?2 s?1. The annealed samples exhibited a significant increase in their microhardness value of 2.65 GPa when being annealed at 723 K, as compared to 2.25 GPa of the as-sintered alloy. The bulk alloy revealed compressive strengths of 520 MPa and 450 MPa at 300 K and 723 K, respectively, when applying a strain rate of 1×10?1 s?1. The microstructural stability of the bulk alloy was ascribed to the formation of iron and chromium containing phases with Al such as Al6Fe, Al13Fe4 and Al13Cr2, in addition to the supersaturated solid solution (SSSS) of Cr and Fe in Al matrix.  相似文献   

8.
It is shown that the ductility of lamellae-structured Fe30Ni20Mn35Al15 (in at. %), which consists of B2 and f.c.c. phases, is influenced by testing environment. Tensile tests performed in air at strain rates ranging from 3 × 10?6 to 3 × 10?1 s?1 showed that the elongation to fracture and ultimate tensile strength (UTS) increased with increasing strain rates below 3 × 10?3 s?1, and were independent of strain rate at ~10.5% and 840 MPa for strain rates ≥ 3 × 10?3 s?1. In order to understand this strain-rate sensitive behavior, tensile tests were also performed in either dry oxygen or 4% hydrogen + nitrogen at different strain rates. The elongation and UTS in oxygen were insensitive to strain rate and close to those tested at 3 × 10?3 s?1 in air, whereas the elongation in hydrogen was 4% for strain rates ≤3 × 10?3 s?1 and increased to ~10.8% at 3 × 10?1 s?1. The reduction of ductility in air and hydrogen-charged environment at low strain rate is attributed to hydrogen embrittlement.  相似文献   

9.
The microstructure and mechanical properties improve substantially by hot working. This aspect in as-cast Mg-7.7Al-0.4Zn (AZ80) alloy is investigated by compression tests over temperature range of 30-439°C and at strain rates of 5 × 10?2, 10?2, 5 × 10?4 and 10?4 s?1. The stress exponent (n) and activation energy (Q) were evaluated and analyzed for high-temperature deformation along with the microstructures. Upon deformation to a true strain of 0.80, which corresponds to the pseudo-steady-state condition, n and Q were found to be 5 and 151 kJ/mol, respectively. This suggests the dislocation climb-controlled mechanism for deformation. Prior to attaining the pseudo-steady-state condition, the stress-strain curves of AZ80 Mg alloy exhibit flow hardening followed by flow softening depending on the test temperature and strain rate. The microstructures obtained upon deformation revealed dissolution of Mg17Al12 particles with concurrent grain growth of α-matrix. The parameters like strain rate sensitivity and activation energy were analyzed for describing the microstructure evolution also as a function of strain rate and temperature. This exhibited similar trend as seen for deformation per se. Thus, the mechanisms for deformation and microstructure evolution are suggested to be interdependent.  相似文献   

10.
The high temperature mechanical properties of Zr50Ni27Nb18Co5 amorphous ribbons, proposed as metallic membrane material for hydrogen purification are presented. The mechanical behavior of the amorphous alloy, which generally does not exhibit a super-cooled liquid region, can be categorized into varying temperature regimes. A strain rate dependent phenomenon was observed between 425°C < T < 490°C in the strain rate range of 10?6s?1 to 10?2s?1. However, the alloy did not exhibit Newtonian-flow characteristics at the varied test temperature and strain rate range employed in this study. Detailed analyses indicated that in these temperature regimes structural changes occur, resulting in the formation of nanocrystalline phases. The results from these mechanical tests corroborated with the microstructural changes that occurred at these temperatures/strain rates.  相似文献   

11.
Influence of creep deformation on the formation of the oxide layer on the high temperature alloy Ni20Cr The formation of the Cr2O3-layer on Ni20Cr has been investigated at 850°C in H2/H2O (p(O2) = 10?19 bar) under simultaneous creep deformation with flat samples. The damage of the protecting oxide layer by cracks has been observed in dependence on deformation rate and strain. For additional information about the influence of the plastic deformation of the oxide layer and the healing of the cracks, preoxidized samples have been deformed in pure Ar-atmosphere. At strain rates below 10?9s?1 cracks cannot be observed. When strain rates < about 3 × 10?8s?1 are applied, cracks occur only above grain boundaries of the alloy, at higher strain rates they also lie in regions above the grains of the alloy. For > about 3 × 10?8s?1 the crack density depends no more on but only on strain . The different damages of the oxide layers in the two atmospheres allow the conclusion, that at from 10?9s?1 to 10?7s?1 beside the plasticity of the oxide layer in particular the crack healing influences the sum of the crack openings measurably. With increasing strain rates the contribution of plasticity can be neglected.  相似文献   

12.
In this study, nanoindentation tests with continuous stiffness measurement technique were measured to investigate the deformation behavior of a high-entropy alloy AlCoCrFeNi under different indentation strain rates at room temperature. Results suggest that the creep behavior exhibits remarkable strain rate dependence. In-situ scanning images showed a conspicuous pileup around the indents, indicating that an extremely localized plastic deformation occurred during the nanoindentation. Under different strain rates, elastic modulus basically remains unchanged, while the hardness decreases with increasing indentation depth due to the indentation size effect. Furthermore, the modulus and hardness of AlCoCrFeNi HEAs are greater than that of the Al x CoCrFeNi (x = 0.3,0.5) at the strain rate of 0.2 s?1 due to its higher negative enthalpy of mixing related to the atomic binding force, and the solid solution strengthening induced by the lattice distortion, respectively.  相似文献   

13.
Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate (~4.5 × 10?6 mm3 N?1 m?1), which was <2% of that of the matrix (~283.3 × 10?6 mm3 N?1 m?1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.  相似文献   

14.
  1. Electrolytic iron coatings on steel St3 increase the strength of the cathode—coating system due to the increase in the strength of the outer layers of the base metal.
  2. The adherence of the coating to the cathode (part) can be determined from the transition zone in the microsection of a control sample.
  3. The strength of the transition zone is higher than that of the coating itself.
  4. Steel St3 hardened by plating with iron is recommended as a replacement for high-quality and alloy steels.
  相似文献   

15.
The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s?1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than εc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.  相似文献   

16.
The mechanisms of plastic deformation of Cr20Ni80 nichrome with an initial grain size of 80 μm were studied in the temperature range 600–950°C and the strain-rate range 1.5 × 10?6?5 × 10?2s?1. Nichrome is shown to exhibit anomalously high values of stress exponent n and a high deformation activation energy Q. These unusual properties were found to be caused by “threshold” stresses below which deformation does not occur. An analysis of the deformation behavior with allowance for threshold stresses reveals the regions of hot, warm, and cold deformation in nichrome. At normalized strain rates \(\dot \varepsilon \) kT/D 1 Gb < 10?8, the true values of n and Q are ~4 and 285 ± 30 kJ/mol, respectively. In the normalized-strain range 10?8?10?4 n ~ 6 and the deformation activation energy decreases to 175 ± 30 kJ/mol. This change in the deformation-behavior characteristics is explained by the transition from high-temperature dislocation climb, which is controlled by lattice self-diffusion, to low-temperature dislocation climb, which is controlled by pipe diffusion, as the temperature decreases. At \(\dot \varepsilon \) kT/D 1 Gb = 10?4, a power law break-down takes place and an exponential law (which describes the deformation behavior in the range of cold deformation) becomes operative.  相似文献   

17.
The Oxidation of TiB2 Particle-Reinforced TiAl Intermetallic Composites   总被引:3,自引:0,他引:3  
Lee  D. B.  Kim  M. H.  Yang  C. W.  Lee  S. H.  Yang  M. H.  Kim  Y. J. 《Oxidation of Metals》2001,56(3-4):215-229
The oxidation kinetics of TiAl alloys with and without (3, 5, 10 wt.%) TiB2 dispersoids were studied between 1073 and 1273 K in atmospheric air. The inert TiB2 dispersoids effectively increased the oxidation resistance of TiAl alloys. The higher the TiB2 dispersoids content, the more pronounced the effect. The oxide scale formed on TiAl–TiB2 composites was triple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (TiO2+Al2O3) mixed layer. No B2O3 was observed within the oxide scale because of its high vapor pressure. A thin Ti3Al sublayer and discrete TiN particles were found at the oxide–substrate interface. During the oxidation of TiAl alloys with and without TiB2 dispersoids, titanium ions diffused outwardly to form the outer TiO2 layer, while oxygen ions transported inwardly to form the inner (TiO2+Al2O3) mixed layer. The increased oxidation resistance by the addition of TiB2 was attributed to the enhanced alumina-forming tendency and thin and dense scale formation.  相似文献   

18.
《Intermetallics》2005,13(8):827-832
Compressive deformation behavior of the Nd60Fe20Co10Al10 bulk metallic glass was characterized over a wide strain rate range (6.0×10−4 to 1.0×103 s−1) at room temperature. Fracture stress was found to increase and fracture strain decrease with increasing applied strain rate. Serrated flow and a large number of shear bands were observed at the quasi-static strain rate (6.0×10−4 s−1). The results suggest that the appearance of a large number of shear bands is probably associated with flow serration observed during compression; and both shear banding and flow serration are a strain accommodation and stress relaxation process. At dynamic strain rates (1.0×103 s−1), the rate of shear band nucleation is not sufficient to accommodate the applied strain rate and thus causes an early fracture of the test sample. The fracture behavior of the Nd60Fe20Co10Al10 bulk metallic glass is sensitive to strain rate.  相似文献   

19.
Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300–420 °C and strain rate range of 0.01–10 s?1. A physically-based model was developed to accurately predict the flow stress. Meanwhile, processing maps were established to optimize hot working parameters. It is found that decreasing the strain rate or increasing the deformation temperature reduces the flow stress. The high activation energy is closely related to the pinning of dislocations from Si-containing dispersoids. Moreover, the deformed grains and the Si-containing dispersoids in the matrix are elongated perpendicular to the compression direction, and incomplete dynamic recrystallization (DRX) is discovered on the elongated boundaries in domain with peak efficiency. The flow instability is mainly attributed to the flow localization, brittle fracture of eutectic Si phase, and formation of adiabatic shear band. The optimum hot working window is 380–420 °C and 0.03–0.28 s?1.  相似文献   

20.
The aim of this work is to analyze the plastic flow instability in Zn-21Al-2Cu alloy deformed under 10?3 s?1 and 513 K, which are optimum conditions for inducing superplastic behavior in this alloy. An evaluation using the Hart and Wilkinson–Caceres criteria showed that the limited stability of plastic flow observed in this alloy is related to low values of the strain-rate sensitivity index (m) and the strain-hardening coefficient (γ), combined with the tendency of these parameters to decrease depending on true strain (ε). The reduction in m and γ values could be associated with the early onset of plastic instability and with microstructural changes observed as function of the strain. Grain growth induced by deformation seems to be important during the first stage of deformation of this alloy. However, when ε > 0.4 this growth is accompanied by other microstructural rearrangements. These results suggest that in this alloy, a grain boundary sliding mechanism acts to allow a steady superplastic flow only for ε < 0.4. For ε values between 0.4 and 0.7, observed occurrences of microstructural changes and severe neck formation lead to the supposition that there is a transition in the deformation mechanism. These changes are more evident when ε > 0.7 as another mechanism is thought to take over.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号