共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
近代机器在不断强化.使机器环境温度增加;由于提高轴的转速,使密封唇口下面的工作温度提高。同时为了提高润滑油的品质,加入许多添加剂,这又使密封件在使用上受到影响。氟橡胶和聚四氟乙烯(PTFE)均被选作先进的密封材料,它们各自具有优异的特性,但也存在着一些局限性。为了克服这些缺点,开发了一种新油封,能克服它们各自的缺点,并能满足目前机器严酷的要求,获得优良的密封性能,同时还有很长的使用寿命。 相似文献
4.
为探讨多因素相互作用对油封可靠性的影响,以某减速器中输入轴与轴承端盖间的油封为研究对象,基于有限元软件获得不同结构参数时油封的静态压力分布曲线和影响系数矩阵,并将分析结果集成到油封的混合数值计算模型,分析并计算油侧唇角、空气侧唇角、理论接触宽度、过盈量、弹簧劲度系数、腰厚、腰长7个结构参数对油封泵送率和摩擦扭矩值的影响;将油封的7个结构参数作为变量因素,以油封泵送率和摩擦扭矩作为响应目标进行正交试验,研究各结构参数对油封密封可靠性的灵敏性。结果表明:各因素对油封泵送率敏感性影响程度由大到小依次为油侧唇角、理论接触宽度、空气侧唇角、腰厚、过盈量、腰长、弹簧劲度系数,各因素对摩擦扭矩的敏感性影响程度由大到小依次为油侧唇角、理论接触宽度、腰厚、弹簧劲度系数、过盈量、空气侧唇角、腰长,表明油侧唇角和理论接触宽度是影响油封可靠性的最主要因素。确定油封参数的最优组合,油封优化后的摩擦扭矩比优化前的更低,因而能够减少油封工作时的摩擦生热量,从而延长油封的使用寿命。 相似文献
5.
基于流量因子统计学方法建立油封密封区域的混合润滑数值模型,利用有限元软件进行求解,分析结构和材料参数对油封密封可靠性的影响规律。结果表明:在研究的参数范围内,静态密封可靠性随腰厚、腰长、空气侧唇角、弹簧的弹性模量、橡胶硬度的增加而提高,随过盈量、油侧角和理论接触宽度的增大而减小;当过盈量为0.4~0.55 mmm、理论接触宽度为0.3~0.6 mm、油侧角为35°~50°、空气侧唇角为15°~30°、腰厚为1.0~1.3 mm、腰长为0.9~1.2 mm、弹簧模量为1 175~1 250 MPa,橡胶硬度为70HA~85HA时有利于油封可靠性的提高,且在此取值范围内,动态密封可靠性随过盈量、油侧唇角、橡胶材料硬度、腰厚和理论接触宽度的增加而增大,随弹簧弹性模量、腰长、空气侧唇角的增大而减小。 相似文献
6.
调研和确定旋转轴唇形密封的可持续标准,根据旋转轴唇形密封的具体结构和生产工艺,基于全生命周期评估(LCA)方法,通过定量和定性相结合的方法,计算和分析旋转轴唇形密封生命周期各阶段的能耗、碳排放、单位生产时间、成本等环境、社会和经济可持续指标,确定旋转轴唇形密封可持续改进策略:环境可持续侧重于使用阶段的能耗降低,社会可持续关注生产工艺创新,经济可持续聚焦于延寿设计。从延长使用寿命和优化运行时的摩擦状态2个方面,实施旋转轴唇形密封的可持续改进设计,分析宏观截面形状和尺寸、唇部的微观相貌、唇部材料对旋转轴唇形密封可持续性能的影响。结果表明:薄唇、微观织构和耐磨材料对降低旋转轴唇形密封的能耗和碳排放都具有积极作用,研究结果对提高旋转轴唇形密封的可持续性具有重要意义。 相似文献
7.
考虑摩擦生热、热滞后热源对旋转轴唇形密封圈温度场的影响,模拟油封在特定工作条件下的温度分布。应用有限元分析软件ABAQUS,建立唇形油封的三维有限元模型,并对某优化前后的唇形油封的非稳态温度场进行仿真,获得压力、转速与油封温升之间的关系曲线。仿真结果表明:该优化前后的唇形油封的温度场分布均满足密封要求;且在分析的工作参数范围内,密封圈温度随压力的增大而减小,随转速的增加而增大;摩擦面上的温度从两侧向中间逐渐增加,最高温度位于中间位置靠近空气侧;且优化后的油封随着转速的增大和压力的升高,温度的变化幅度趋于平缓,证实了优化后油封的较好密封性能和散热性能。 相似文献
8.
为了进一步研究唇形密封圈的密封机制,建立唇形密封的理论模型。基于流量因子分析轴向泵汲效应,建立泵汲流量方程;运用圆周平均雷诺方程描述密封界面流场,采用G-W模型近似描述唇轴粗糙峰互相接触下的接触力与径向变形;定量分析密封界面的周向摩擦力,并给出流体摩擦表达式;对以上各因素进行强耦合分析。结合船舶桨轴密封圈的实际应用工况及结构参数进行仿真计算,得出其方向角、膜厚、压力分布,并得到净流量随转速和粗糙度的变化关系。研究结果表明:净流量随转速增加而增加,但增速逐渐变缓;净流量随粗糙度近似呈线性增加,但高粗糙度会使泄漏量增大和导致表面更容易被磨损,因此实际唇口粗糙度的选取应综合考量多种因素。 相似文献
9.
为研究往复运动密封性能,采用MatLab数值方法建立一种混合润滑模型,该模型包含弹性力学、流体力学和接触力学分析。基于混合润滑模型,研究粗糙度和往复速度对动态往复密封摩擦力、泄漏量和油膜厚度等密封性能的影响规律,揭示液压往复密封机制。结果表明:往复运动密封圈处于混合润滑状态,接触区不仅有流体压力,还包含粗糙度接触压力;存在临界粗糙度σc和临界速度uc,当粗糙度σ<σc时,随粗糙度的增大内行程的泄漏表现为越来越小的内泄漏,当σ≥σc时,随粗糙度的增大内行程的泄漏表现为越来越大的外泄漏;当速度uc时,净泄漏量随速度的增大表现为越来越小的外泄漏,当u≥uc时,净泄漏量随速度的增大表现为越来越大的内泄漏;随着粗糙度的增加,膜厚与内行程的摩擦力增大,而外行程的摩擦力无明显变化;随着速度的增加,油膜厚度增加,内行程摩擦力减小,而外行程摩擦力变化很小。 相似文献
10.
正旋转轴唇形密封圈是工程机械常用配件。全面了解旋转轴唇形密封圈的技术要求和使用要点,是做好工程机械维修工作的重要环节。1.结构和原理(1)结构旋转轴唇形密封圈主体由橡胶制成,其外径部位设有金属骨架。金属骨架的作用是增强密封圈强度,以便牢固地安装在座孔中。旋转轴唇形密封圈有6种型式,即内包骨架型、外露骨架型、装配型、带副唇内包骨架型、带副唇外露骨架型和带副唇装配型。旋转轴唇形密封圈内径为弹性密封唇,其在 相似文献
11.
12.
新型动静压混合润滑机械密封流场数值研究 总被引:3,自引:0,他引:3
以流体膜为研究对象,建立了新型动静压混合润滑密封端面的三维模型,并利用流体力学软件FLUENT对端面流场进行数值模拟,得出端面液膜的压力分布及速度分布.通过与静压和动压式密封对比,分析了操作参数(如封液压力、转速)对密封性能的影响规律.结果表明,该密封兼有动压与静压两种密封形式的特点,泄漏量小,液膜刚度大,适合于低速非接触密封. 相似文献
13.
将全局网络重构的有限元方法与润滑条件下的数值计算模型相结合,分析油封在润滑条件下的磨损过程中,唇口轮廓、接触压力、最大接触压力、泵吸率和摩擦扭矩等密封性能参数的变化趋势。模拟结果表明:油封磨损可以分为2个阶段,第一阶段为初期磨损阶段,该阶段唇口的磨损速率较大,最大接触压力也呈现较大的下降趋势;第二阶段为稳定磨损阶段,该阶段磨损速率较小,磨损量也较小,最大接触压力变化趋势趋于平缓;唇口轮廓的磨损程度随着磨损时间的增加而逐渐趋于平缓,并且空气侧的磨损程度比油侧更为严重;泵吸率呈现出先下降后上升的变化趋势,说明磨损会导致的唇尖材料损失,会引起油封密封性能的不稳定;摩擦扭矩由于受磨损导致的径向力和润滑油剪切作用相互变化的叠加影响,呈现上升的趋势。 相似文献
14.
以流体膜为研究对象,建立了新型动静压混合润滑密封端面的三维模型,并利用流体力学软件FLUENT对端面流场进行数值模拟,得出主要结构参数(动压槽深度、静压槽深度、动压槽宽比、静压槽宽比)对端面开启力、两侧泄漏量等密封性能的影响规律。通过分析得出各结构参数的大致范围,从而对新型动静压混合润滑机械密封结构进行了优化。 相似文献
15.
16.
17.
建立橡胶旋转轴唇形密封圈的广义轴对称模型,并基于Abaqus/Python二次开发与Abaqus/ALE自适应网格技术提出一种密封圈磨损有限元仿真方法,通过与实验结果对比,验证了方法的有效性。相比于三维磨损模型,该方法能够在保证计算精度的同时显著提高计算效率。基于该方法研究不同工况参数对密封圈磨损的影响。结果表明:磨损初期主唇口的空气侧磨损程度较油侧更严重,后期主唇口油侧磨损程度逐渐超过空气侧;转速对磨损的影响较小,且在相同磨损时间不同转速下的主唇口轮廓线大致平行;装配过盈量对磨损影响较大,但在相同磨损时间不同过盈量下的主唇口轮廓线大致平行;弹簧箍紧力对磨损的影响较大,相同磨损时间情况下,弹簧箍紧力越大则主唇口油侧磨损越严重。 相似文献
18.
在新能源商用车重载工况较多的领域,电动油泵强制润滑由于润滑油量精确、稳定、可定量调整等优点,逐渐成为变速器润滑的发展趋势.强制润滑需要油泵持续稳定的提供润滑油至轴齿传动系统的精确位置.在车辆行驶过程中,整车不可避免会出现倾斜,在变速器跟随车身发生倾斜的情况下,若润滑油液面低于油泵吸油口,则会出现泵油不充分的情况,导致润... 相似文献
19.
盾构机主驱动唇形密封性能直接影响整台盾构机的施工效率。盾构机主驱动唇封密封介质为润滑脂,工作时唇口温度可达50~60℃,为更好地预测唇封的密封性能,考虑润滑脂流变特性、唇口温度对流场分析、密封材料的影响,建立盾构机唇形密封流固热耦合仿真模型。利用流速分离法推导润滑脂二维雷诺方程,采用赫兹接触模型计算粗糙峰接触压力,结合有限元软件开展热力耦合分析,实现唇封温度场及摩擦力矩、泄漏率等关键性能参数的定量预测。结果表明:考虑温度场后唇封最大接触压力减小,接触宽度增大,摩擦力矩减小。温度对唇封应力应变状态及密封性能产生较大影响,这对盾构机主驱动唇形密封设计具有一定指导作用。 相似文献
20.
针对带减速器的涡轮钻具密封过早失效的现状,对平衡式机械密封模型进行受力分析,提出在平衡式机械密封中,当密封面每侧的压力面积占密封面面积的1/2时,密封端面的膜压力受外界影响波动最小.为了验证此结论,设计并组装了密封试验台,主要用来监控高压和低压工况下密封面的内外侧温度、扭矩、端面压力、膜厚和动环振动量等性能参数. 相似文献