首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
超磁致伸缩材料作为一种新型功能材料,具有大磁致伸缩系数、高能量密度、低磁场驱动、高磁机转换效率以及快速响应等优点,在精密驱动技术中得到应用。利用磁致伸缩正效应可以开发微位移执行器、力驱动器和振动器等;利用磁致伸缩逆效应可以开发力、力矩和位移传感器以及能量转换器;利用磁致伸缩正逆耦合效应可以开发集驱动、力测量、输出力感知和输出力可控等功能于一体的器件,应用于精密驱动领域。在分析了磁致伸缩正效应、逆效应以及正逆耦合效应机理的基础上,阐述了超磁致伸缩传感器、执行器以及传感执行一体化器件的开发原理及其应用现状。  相似文献   

2.
磁致伸缩逆效应是稀土超磁致伸缩材料的一个重要应用特性,应用磁致伸缩逆效应可以制作超磁致伸缩力传感器。但由于缺乏相应的设计理论分析,从而制约了其发展。在分析了磁致伸缩逆效应的基础上,给出了超磁致伸缩力传感器的设计原理,设计了超磁致伸缩力传感器的结构,并采用数值计算方法对其磁场进行了计算。计算结果与实验结果的比较表明:二者符合较好,设计的超磁致伸缩力传感器方案是可行的,对其今后进行深入应用研究和优化设计具有重要意义。  相似文献   

3.
稀土超磁致伸缩执行器优化设计及控制建模   总被引:4,自引:0,他引:4  
研究了超磁致伸缩执行器设计中电、磁、机械及热设计中的优化方法,包括线圈的几何尺寸优化、磁路及偏磁场设计、预压力设计、考虑温度效应的修正模型等;建立了超磁致伸缩执行器基于输入电压一输出位移的控制模型,实验测得系统频率响应曲线与仿真结果一致。  相似文献   

4.
超磁致伸缩材料驱动器的数学模型   总被引:11,自引:0,他引:11  
本文从有助于理解压磁效应的角度,建立了超磁致伸缩驱动器(GMA)的静态力、位移模型。作出了几个有利于指导设计的推论,并对设计中的一些问题做了定性讨论。动态建模时,在Bryant and Wang所建模型的基础上,作了一些重要改进。首次提出了采用磁通反馈的动态模型,解决了将电感作为常量而出现的建模失真问题。  相似文献   

5.
超磁致伸缩执行器在机电工程中的应用研究现状   总被引:10,自引:1,他引:9  
在查阅大量文献的基础上,系统地介绍了超磁致伸缩材料执行器在机电领域中的最新应用开发状况,展望了它的广阔发展前景。  相似文献   

6.
超磁致伸缩微位移执行器的研制及控制技术   总被引:1,自引:0,他引:1  
研制了一种利用超磁致伸缩材料Terfenol-D棒材制成的超磁致伸缩微位移执行器,在实践中得到了很好的应用,以单片机和上位PC微机为控制核心,设计并构建了计算机闭环控制系统,完成了相应的软硬件设计,为进一步提高超磁致伸缩执行器的精度,改善整个系统的动态特性奠定基础。  相似文献   

7.
针对当前超磁致伸缩执行器驱动电源效率不高问题,采用连续调整型恒流源的原理,并选用功率MOSFET作为功率放大元件,研制出具有“轨-轨”输出特性的线性电流源型GMA驱动电源。实际测试的结果表明,其性能良好,可以满足驱动超磁致伸缩材料的要求。  相似文献   

8.
超磁致伸缩材料(GMM)是一种具有双向可逆换能效应(磁-机、机-磁)的新型功能材料,利用其逆效应在超磁致伸缩执行器(GMA)驱动过程中感知出传感信号,可实现自感知执行器.探讨超磁致伸缩逆效应的机理,设计一种试验方法,验证了超磁致伸缩执行器中的磁致伸缩逆效应.揭示预压应力、偏置磁场和激振力频率等因素对超磁致伸缩逆效应性能的影响规律,预压应力越大则逆效应性能越差,适当的偏置磁场可使逆效应性能显著增强,激振力频率越高,力感知灵敏度越高,但不成简单的正比关系.试验证明了GMA作力传感器有效性,提出一种分时结构的自感知GMA.  相似文献   

9.
基于圆形膜片柔性结构的超磁致伸缩执行器的研究   总被引:1,自引:0,他引:1  
分析了超磁致伸缩材料的工作机理及特性,介绍了超磁致伸缩微位移驱动系统的组成原理和微位移执行器的结构。在此基础上,提出一种元摩擦和无爬行现象的圆形膜片柔性结构作为微位移执行器的力和位移的传递机构,建立其简化的力学模型,并采用弹性力学和有限元的方法对其力学性能进行了理论分析。实验结果表明,基于圆形膜片柔性结构的超磁致伸缩微位移执动器具有结构紧凑、重复精度高、输出位移大(可达40um)的优点。  相似文献   

10.
超磁致伸缩材料在流体控制元件中的应用研究展望   总被引:9,自引:1,他引:9  
本文介绍超磁致伸缩材料及其应用研究现状,重点提出该材料在流体器件方面可能的应用研究方向。  相似文献   

11.
超磁致伸缩材料的工程应用研究现状   总被引:2,自引:0,他引:2  
刘楚辉 《机械制造》2005,43(8):25-27
系统地介绍了国内外稀土超磁致伸缩材料在各工程领域中的应用及其开发概况,剖析了基于该材料的各种应用器件的原理与结构,并对其性能作了阐述。重点介绍了稀土铁系超磁致伸缩材料在机电工程中的应用,并对该材料未来的发展及应用领域作了展望。  相似文献   

12.
超磁致伸缩材料的特性参数测量及其应用研究   总被引:2,自引:0,他引:2  
夏春林  丁凡  路甬祥 《仪器仪表学报》1999,20(4):368-370,379
超磁致伸缩材料是一种新型的功能材料,具有应变大,响应快,能量传输密度高等特点。本文介绍国产区域熔炼法制备的多晶超磁致伸缩材料主要特性参数的测量方法,结果,并将实测特性与国外同类材料特性进行了比较。表明国产材料具有较佳的性能;还介绍了采用该材料研制的一气动伺服压力控制阀,给出了电-机械传动器静,动态特性曲线和电-气动伺服压力控制阀输出特性曲线。  相似文献   

13.
超磁致伸缩执行器及其在微小流体泵中的应用   总被引:1,自引:0,他引:1  
超磁致伸缩材料(GMM)是一种新型的功能材料,具有应变大,响应速度快,能量传输密度高和输出力大等优异性能;GMM执行器具有非接触式驱动,结构相对简单和易于微型化等特点。文章介绍了两种GMM执行器的基本结构和原理,并着重分析了基于这两种GMM执行器新型流体泵的结构组成,工作原理和性能特点。  相似文献   

14.
超磁致伸缩微位移执行器控制方法的研究   总被引:8,自引:0,他引:8  
超磁致伸缩材料是近年来发展起来的一种新型功能材料。在分析了超磁致伸缩材料的驱动原理 ,并给出了它的两种驱动结构形式的基础上 ,对采用电流和磁感应强度做为控制量的两种控制方法进行了对比分析和实验研究 ,得出了基于磁感应强度的控制方法可提高超磁致伸缩微位移执行器的线性度和控制精度、减小迟滞的结论。  相似文献   

15.
超磁致伸缩执行器的系统建模与控制技术   总被引:1,自引:0,他引:1  
回顾了超磁致伸缩执行器的系统建模与控制技术的发展历程.归纳出超磁致伸缩执行器的基本设计思想.总结了近年来在传感器、执行器集成、磁滞非线性建模以及控制技术方面的主要研究成果,讨论了该领域尚待解决的问题.  相似文献   

16.
超磁致伸缩材料具有相对磁导率高、磁机转换率高等优良特性,对于传感器装置是一种很好的材料.文中基于维拉里效应原理完成了超磁致伸缩力传感器的设计,并利用有限元分析方法验证了所设计传感器磁场分布的合理性.提出了基于电感测童力传感器输出特性的方法,并进行了实验,确定了该传感器的灵敏度最高状态的最佳偏置磁场强度;并测量了0~10(3)作用力下传感器的输出特性,实验结果表明该传感器输出特性良好,可用于高精度要求的场合.  相似文献   

17.
准确辨识模型参数是提高超磁致伸缩执行器位移控制精度的关键,针对单一算法难以实现对超磁致伸缩磁滞非线性模型参数准确识别的问题,将遗传算法与模拟退火算法融合,首先利用遗传算法的快速搜索能力得到一个较优群体,再利用模拟退火算法的突跳能力对整个群体进行优化调整,并在算法中引入最优保留策略和动态步长搜索方法,提出一种改进的遗传模拟退火算法,并将其应用于对超磁致伸缩执行器位移磁滞非线性模型参数辨识。该算法兼具遗传算法和模拟退火算法的优点,既有较快的收敛速度,又提高了辨识精度和最优解质量。通过试验验证,超磁致伸缩棒伸长量的模型计算结果与测量值符合程度较好,平均相对误差为3.85%,该方法能方便有效地辨识模型参数。  相似文献   

18.
在分析了超磁致伸缩材料工作特性的基础上,提出了一种基于超磁致伸缩材料的发音头盔。介绍了发音头盔的工作原理和结构,超磁致伸缩驱动器以及在头盔中固定机构的设计。该发音头盔极大地提高了头盔的使用性能,具有广阔的推广应用前景。  相似文献   

19.
超磁致伸缩材料发展及其应用现状研究   总被引:12,自引:1,他引:12  
邬义杰 《机电工程》2004,21(4):55-59
概要地说明了磁致伸缩现象及其机理,回顾了磁致伸缩材料的发展。系统地介绍了国内外稀土铁系超磁致伸缩材料在各个领城的应用及其开发情况,剖析了基于该材料的各种应用器件原理与结构,并对其性能作了阐述。重点介绍了稀土铁系超磁致伸缩材料在机电工程中的应用,并对该材料未来的发展及应用领域作了展望。  相似文献   

20.
超磁致伸缩器件的输入应力与输出磁通密度存在着滞回非线性.基于Jiles-Atherton模型、磁机械效应方法定律和磁路定律,建立一个超磁致伸缩磁力控制器件的滞回模型.试验结果表明,该模型能较好地描述在变化应力和恒定偏置磁场作用下,超磁致伸缩器件输入应力与输出磁通密度及磁力的滞回关系,并可以预测偏置磁场对器件输出性能的影响,从而对器件的设计与分析具有重要指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号