首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Structures of proteins in unfolded states have important implications for the protein folding problem and for the translocation of polypeptide chains. Acid-denatured, cold-denatured, and 6 M guanidine hydrochloride (GuHCl) denatured yeast phosphoglycerate kinase (PGK) are ensembles of flexible unfolded molecules with rapidly interconverting structures of the individual polypeptide chains. They differ, however, in their physical properties, such as in coil size and in stiffness over a short distance along the chain. These properties of polypeptide chains can be described well by persistence statistics. A solution containing 0.7 M GuHCl at 4.5 degrees C is nearly a Theta-solvent for PGK. By contrast, 6 M GuHCl is a good solvent for PGK. Acid-denatured PGK at low ionic strength has the most expanded and stiffest chains. The conformation of heat-denatured PGK should be more compact than that of random walk chains at the Theta-point, as can be inferred from measurements on other proteins. Investigations of heat-denatured PGK by scattering methods are unfeasible due to aggregation of the protein. The persistence length as a measure of chain stiffness varies between a = 1.74 nm for cold-denatured PGK and a = 3.0 nm for acid-denatured PGK. The distribution functions of the gyration radii were calculated from the X-ray scattering data for all unfolded states and compared with the radius of gyration of the natively folded molecule.  相似文献   

2.
The conformations that amino acids can adopt in the random coil state are of fundamental interest in the context of protein folding research and studies of protein-peptide interactions. To date, no detailed quantitative data from experimental studies have been reported; only nuclear magnetic resonance parameters such as chemical shifts and J coupling constants have been reported. These experimental nuclear magnetic resonance data represent averages over multiple conformations, and hence they do not provide unique structural information. I have performed relatively long (2.5 ns) molecular dynamics simulations of Gly-X-Gly tripeptides, surrounded by explicit water molecules, where X represents eight different amino acids with long side chains. From the trajectories one can calculate time averaged backbone chemical shifts and 3J(NH alpha) coupling constants and compare these with experimental data. These calculated quantities are quite close to the experimental values for most amino acids, suggesting that these simulations are a good model for the random coil state of the tripeptides. On the basis of my simulations I predict 3J(alphabeta) coupling constants and present dihedral distributions for the phi, psi, as well as chi1 and chi2 angles. Finally, I present correlation plots for these dihedral angles.  相似文献   

3.
A 130-residue fragment (D1-D4) taken from a fibronectin-binding protein of Staphylococcus aureus, which contains four fibronectin-binding repeats and is unfolded but biologically active at neutral pH, has been studied extensively by NMR spectroscopy. Using heteronuclear multidimensional techniques, the conformational properties of D1-D4 have been defined at both a global and a local level. Diffusion studies give an average effective radius of 26.2 +/- 0.1 A, approximately 75% larger than that expected for a globular protein of this size. Analysis of chemical shift, 3JHNalpha coupling constant, and NOE data show that the experimental parameters agree well overall with values measured in short model peptides and with predictions from a statistical model for a random coil. Sequences where specific features give deviations from these predictions for a random coil have however been identified. These arise from clustering of hydrophobic side chains and electrostatic interactions between charged groups. 15N relaxation studies demonstrate that local fluctuations of the chain are the dominant motional process that gives rise to relaxation of the 15N nuclei, with a persistence length of approximately 7-10 residues for the segmental motion. The consequences of the structural and dynamical properties of this unfolded protein for its biological role of binding to fibronectin have been considered. It is found that the regions of the sequence involved in binding have a high propensity for populating extended conformations, a feature that would allow a number of both charged and hydrophobic groups to be presented to fibronectin for highly specific binding.  相似文献   

4.
In aqueous solution, while cytochrome c is a stably folded protein with a tightly packed structure at the secondary and tertiary levels, its heme-free precursor, apocytochrome c, shows all features of a structureless random coil. However, upon interaction with phospholipid vesicles or lysophospholipid micelles, apocytochrome c undergoes a conformational transition from its random coil in solution to an alpha-helical structure on association with lipid. The driving forces of this lipid-induced folding process of apocytochrome c were investigated for the interaction with various phospholipids and lysophospholipids. Binding of apocytochrome c to negatively charged phospholipid vesicles induced a partially folded state with approximately 85% of the alpha-helical structure of cytochrome c in solution. In contrast, in the presence of zwitterionic phospholipid vesicles, apocytochrome c remains a random coil, suggesting that negatively charged phospholipid headgroups play an important role in the mechanism of lipid-induced folding of apocytochrome c. However, negatively charged lysophospholipid micelles induce a higher content of alpha-helical structure than equivalent negatively charged diacylphospholipids in bilayers, reaching 100% of the alpha-helix content of cytochrome c in solution. Furthermore, micelles of lysolipids with the same zwitterionic headgroup of phospholipid bilayer vesicles induce approximately 60% of the alpha-helix content of cytochrome c in solution. On the basis of these results, we propose a mechanism for the folding of apocytochrome c induced by the interaction with lipid, which accounts for both electrostatic and hydrophobic contributions. Electrostatic lipid-protein interactions appear to direct the polypeptide to the micelle or vesicle surface and to induce an early partially folded state on the membrane surface. Hydrophobic interactions between nonpolar residues in the protein and the hydrophobic core of the lipid bilayer stabilize and extend the secondary structure upon membrane insertion.  相似文献   

5.
The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1).  相似文献   

6.
We describe a novel method of obtaining information about the structures of transient conformations on the folding pathway from their ionization equilibria: the H+ -titration behavior of a protein residue is determined in detail by its environment. We follow the consolidation of electrostatic interactions in the folding process by comparing the acid-titration behavior of four conformations on the folding pathway of barnase: the denatured state (D); the folding intermediate (I); the major transition state(+); and the native state (N) in the scheme D <==>I<==>(+)<==)N. The results show that strong electrostatic interactions are present in the major transition state: some of its carboxylate groups display the highly anomalous pKA values of <2 that are found in N. However, the network of ionic surface interactions is not formed in (+), and the overall protection of titrating residues is weakened. The results are consistent with the transition state being an expanded form of the native state, with a weakened but poorly hydrated core and a loosened periphery. The surface residues in such an expanded conformation are, on average, farther apart than are those in the center of the molecule. The results concerning the folding intermediate are less clear cut. We show that the interpretation of kinetic data relating to folding intermediates depends critically on assumptions about their equilibrium with other denatured states. We have, however, characterized the pH and ionic strength dependence of an apparent stability of I, using the deviation from two-state folding behavior, which can be used to investigate electrostatic properties of folding intermediates from a variety of mechanisms. In general, the data imply that I is somewhat similar to (+). Apparently odd titration properties of I are investigated further in the accompanying paper [Oliveberg, M., & Fersht, A. (1996) Biochemistry 35, 2738-2749]. The approach in this study may be of particular use in testing theoretical results since the relationship between H+ -titration properties and protein structure can be treated by classical electrostatics.  相似文献   

7.
The folding of a protein-like heteropolymer is studied by using direct simulation of a lattice model that folds rapidly to a well-defined "native" structure. The details of each molecular folding event depend on the random initial conformation as well as the random thermal fluctuations of the polymer. By analyzing the statistical properties of hundreds of folding events, a classical folding "pathway" for such a polymer is found that includes partially folded, on-pathway intermediates that are shown to be metastable equilibrium states of the polymer. These results are discussed in the context of the "classical" and "new" views of folding.  相似文献   

8.
For a minimalist model of protein folding, which we introduced recently, we investigate various methods to obtain folding sequences. A detailed study of random sequences shows that, for this model, such sequences usually do not fold to their ground states during simulations. Straight-forward techniques for the construction of folding sequences, based solely on the target structure, fail. We describe in detail an optimization algorithm, based on genetic algorithms, for the "simulated breeding" of folding sequences in this model. We find that, for any target structure studied, there is not only a single folding sequence but a patch of sequences in sequence space that fold to this structure. In addition, we show that, much as in real proteins, nonhomologous sequences may fold to the same target structure.  相似文献   

9.
BACKGROUND: Native state hydrogen/deuterium exchange studies on cytochrome c and RNase H revealed the presence of excited states with partially formed native structure. We set out to determine whether such excited states are populated for a very small and simple protein, the IgG-binding domain of peptostreptococcal protein L. RESULTS: Hydrogen/deuterium exchange data on protein L in 0-1.2 M guanidine fit well to a simple model in which the only contributions to exchange are denaturant-independent local fluctuations and global unfolding. A substantial discrepancy emerged between unfolding free energy estimates from hydrogen/deuterium exchange and linear extrapolation of earlier guanidine denaturation experiments. A better determined estimate of the free energy of unfolding obtained by global analysis of a series of thermal denaturation experiments in the presence of 0-3 M guanidine was in good agreement with the estimate from hydrogen/deuterium exchange. CONCLUSIONS: For protein L under native conditions, there do not appear to be partially folded states with free energies intermediate between that of the folded and unfolded states. The linear extrapolation method significantly underestimates the free energy of folding of protein L due to deviations from linearity in the dependence of the free energy on the denaturant concentration.  相似文献   

10.
We have shown that the complexes between SecB, a chaperone from Escherichia coli, and two physiological ligands, galactose-binding protein and maltose-binding protein, are in rapid, dynamic equilibrium between the bound and free states. Binding to SecB is readily reversible, and each time the ligand is released it undergoes a kinetic partitioning between folding to its native state and re-binding to SecB. Binding requires that the polypeptide be devoid of tertiary structure; once the protein has folded, it is no longer a ligand. Conditions were established in which folding of the polypeptides was sufficiently slow so that at each cycle of dissociation rebinding was favored over folding and a kinetically stable complex between SecB and each polypeptide ligand was observed. Evidence that the ligand is continually released to the bulk solution and rebound was obtained by altering the conditions to increase the rate of folding of each ligand so that folding of the ligand was faster than reassociation with SecB thereby allowing the system to partition to free SecB and folded polypeptide ligand. We conclude that complexes between the chaperone SecB and ligands are in dynamic, rapid equilibrium with the free states. This mode of binding is simpler than that documented for chaperones that function to facilitate folding such as the Hsp70s and Hsp60s, where hydrolysis of ATP is coupled to the binding and release of ligands. This difference may reflect the fact that SecB does not mediate folding but is specialized to facilitate protein export. Without a requirement for exogenous energy it efficiently performs its sole duty: to keep proteins in a nonnative conformation and thus competent for export.  相似文献   

11.
The recent progress in measurements on the amide hydrogen exchange (HX) in proteins under varying denaturing conditions, both at equilibrium and in transient relaxation, necessitates the development of a unifying theory which quantitatively relates the HX rates to the conformational energetics of the proteins. We present here a comprehensive kinetic model for the site-specific HX of proteins under varying solvent denaturing conditions based on the two-state protein folding model. The generalized two-process model considers both conformational fluctuations and residual protections, respectively, within the folded and unfolded states of a protein, as well as a global kinetic folding-unfolding transition between the two states. The global transition can be either rapid or slow, depending on the solvent condition for the protein. This novel model is applicable to the traditional equilibrium HX measurements in both EX2 and EX1 regimes, and also the recently introduced transient pulse-labeling HX experiments. A set of simple analytical equations is provided for quantitative interpretation of experimental data. The model emphasizes the use of full time-course of bi-exponential HX kinetics, rather than fitting time-course data to single rate constants, to obtain quantitative information about fluctuating conformers within the folded and unfolded states of proteins. This HX kinetic model naturally unfolds into a simple two-state and two-stage kinetic interpretation for protein folding. It suggests that the various observed intermediates of a protein can be interpreted as dominant isomers of either the folded or the unfolded state under different solvent conditions. This simple, minimalist's view of protein folding is consistent with various recent experimental observations on folding kinetics by HX.  相似文献   

12.
CI2 folds and unfolds as a single cooperative unit by simple two-state kinetics, which enables the properties of the transition state to be measured from both the forward and backward rate constants. We have examined how the free energy of the transition state for the folding of chymotrypsin inhibitor 2 (CI2) changes with pH and temperature. In addition to the standard thermodynamic quantities, we have measured the overall acid-titration properties of the transition state and its heat capacity relative to both the denatured and native states. We were able to determine the latter by a method analogous to a well-established procedure for measuring the change in heat capacity for equilibrium unfolding: the enthalpy of activation of unfolding at different values of acid pH were plotted against the average temperature of each determination. Our results show that the transition state of CI2 has lost most of the electrostatic and van der Waals' interactions that are found in the native state, but it remains compact and this prevents water molecules from entering some parts of the hydrophobic core. The properties of the transition state of CI2 are then compared with the major folding transition state of the larger protein barnase, which folds by a multi-state mechanism, with the accumulation of a partly structured intermediate (Dphys or I). CI2 folds from a largely unstructured denatured state under physiological conditions via a transition state which is compact but relatively uniformly unstructured, with tertiary and secondary structure being formed in parallel. We term this an expanded pathway. Conversely, barnase folds from a largely structured denatured state in which elements of structure are well formed through a transition state that has islands of folded elements of structure. We term this a compact pathway. These two pathways may correspond to the two extreme ends of a continuous spectrum of protein folding mechanisms. Although the properties of the two transition states are very different, the activation barrier for folding (Dphys-->++) is very similar for both proteins.  相似文献   

13.
We use two simple models and the energy landscape perspective to study protein folding kinetics. A major challenge has been to use the landscape perspective to interpret experimental data, which requires ensemble averaging over the microscopic trajectories usually observed in such models. Here, because of the simplicity of the model, this can be achieved. The kinetics of protein folding falls into two classes: multiple-exponential and two-state (single-exponential) kinetics. Experiments show that two-state relaxation times have "chevron plot" dependences on denaturant and non-Arrhenius dependences on temperature. We find that HP and HP+ models can account for these behaviors. The HP model often gives bumpy landscapes with many kinetic traps and multiple-exponential behavior, whereas the HP+ model gives more smooth funnels and two-state behavior. Multiple-exponential kinetics often involves fast collapse into kinetic traps and slower barrier climbing out of the traps. Two-state kinetics often involves entropic barriers where conformational searching limits the folding speed. Transition states and activation barriers need not define a single conformation; they can involve a broad ensemble of the conformations searched on the way to the native state. We find that unfolding is not always a direct reversal of the folding process.  相似文献   

14.
The behaviour of amino acid side-chains in proteins in solution has been characterised by analysing NMR 3JHalphaH beta coupling constants and crystallographic chi1 torsion angles. Side-chains both in the core of native folded proteins and in situations where there is an absence of close packing including the random coil state have been considered. An analysis of experimental 3JHalphaH beta coupling constant data for ten proteins shows that in the core of native proteins a very close similarity is observed between the chi1 conformations adopted in solution and in crystals. There is clear evidence, however, for significant motional averaging about the chi1 torsion angles in solution. Using a model of a Gaussian distribution about the average torsion angles the extent of these fluctuations has been quantified; the standard deviation for the motion is 26 degrees, the fluctuations about chi1 in the protein core being similar in size to those found for main-chain phi torsion angles in solution. From the distribution of chi1 torsion angles in a data base of protein crystal structures, torsion angle populations and coupling constants have been predicted for a random coil polypeptide. Significant variations in the chi1 distributions for different amino acids give differences in the predicted coupling constants; for 3JHalphaH beta, for example, values of 5.1 and 5.7 Hz are predicted for serine compared with 4.9 and 9.9 Hz for leucine. Experimental data for short unstructured peptides show an excellent agreement with the predictions, indicating that the overall chi1 distributions in protein crystals reflect the local preferences of the amino acids. Predictions from the protein data base therefore provide an important framework for interpreting experimental data for non-native protein conformations and for residues on the surface of folded proteins.  相似文献   

15.
The pressure-induced unfolding of wild-type staphylococcal nuclease (Snase WT) was studied using synchrotron X-ray small-angle scattering (SAXS) and Fourier-transform infrared (FT-IR) spectroscopy, which monitor changes in the tertiary and secondary structural properties of the protein upon pressurization. The experimental results reveal that application of high-pressure up to 3 kbar leads to an approximate twofold increase of the radius of gyration Rg of the native protein (Rg approximately 17 A) and a large broadening of the pair-distance-distribution function, indicating a transition from a globular to an ellipsoidal or extended chain structure. Analysis of the FT-IR amide I' spectral components reveals that the pressure-induced denaturation process sets in at 1.5 kbar at 25 degrees C and is accompanied by an increase in disordered and turn structures while the content of beta-sheets and alpha-helices drastically decreases. The pressure-induced denatured state above 3 kbar retains nonetheless some degree of beta-like secondary structure and the molecule cannot be described as a fully extended random coil. Temperature-induced denaturation involves a further unfolding of the protein molecule which is indicated by a larger Rg value and significantly lower fractional intensities of IR-bands associated with secondary-structure elements. In addition, we have carried out pressure-jump kinetics studies of the secondary-structural evolution and the degree of compactness in the folding/unfolding reactions of Snase. The effect of pressure on the kinetics arises from a larger positive activation volume for folding than for unfolding, and leads to a significant slowing down of the folding rate with increasing pressure. Moreover, the system becomes two-state under pressure. These properties make it ideal for probing multiple order parameters in order to compare the kinetics of changes in secondary structure by pressure-jump FT-IR and chain collapse by pressure-jump SAXS. After a pressure jump from 1 bar to 2.4 kbar at 20 degrees C, the radius of gyration increases in a first-order manner from 17 A to 22.4 A over a timescale of approximately 30 minutes. The increase in Rg value is caused by the formation of an extended (ellipsoidal) structure as indicated by the corresponding pair-distance-distribution function. Pressure-jump FT-IR studies reveal that the reversible first order changes in beta-sheet, alpha-helical and random structure occur on the same slow timescale as that observed for the scattering curves and for fluorescence. These studies indicate that the changes in secondary structure and chain compactness in the folding/unfolding reactions of Snase are probably dependent upon the same rate-limiting step as changes in tertiary structure.  相似文献   

16.
It has generally been assumed that the aggregation of partially folded intermediates during protein refolding results in the termination of further protein folding. We show here, however, that under some conditions the association of partially folded intermediates can induce additional structure leading to soluble aggregates with many native-like properties. The amount of secondary structure in a monomeric, partially folded intermediate of staphylococcal nuclease was found to double on formation of soluble aggregates at high protein or salt concentrations. In addition, more globularity, as determined from Kratky plots of small-angle x-ray scattering data, was also noted in the associated states.  相似文献   

17.
The kinetics of the guanidine hydrochloride-induced unfolding and refolding of bovine beta-lactoglobulin, a predominantly beta-sheet protein in the native state, have been studied by stopped-flow circular dichroism and absorption measurements at pH 3.2 and 4.5 degrees C. The refolding reaction was a complex process composed of different kinetic phases, while the unfolding was a single-phase reaction. Most notably, a burst-phase intermediate of refolding, which was formed during the dead time of stopped-flow measurements (approximately 18 ms), showed more intense ellipticity signals in the peptide region below 240 nm than the native state, yielding overshoot behavior in the refolding curves. We have investigated the spectral properties and structural stability of the burst-phase intermediate and also the structural properties in the unfolded state in 4.0 M guanidine hydrochloride of the protein and its disulfide-cleaved derivative. The main conclusions are: (1) the more intense ellipticity of the intermediate in the peptide region arises from formation of non-native alpha-helical structure in the intermediate, apparently suggesting that the folding of beta-lactoglobulin is not represented by a simple sequential mechanism. (2) The burst-phase intermediate has, however, a number of properties in common with the folding intermediates or with the molten globule states of other globular proteins whose folding reactions are known to be represented by the sequential model. These properties include: the presence of the secondary structure without the specific tertiary structure; formation of a hydrophobic core; broad unfolding transition of the intermediate; and rapidity of formation of the intermediate. The burst-phase intermediate of beta-lactoglobulin is thus classified as the same species as the molten globule state. (3) The circular dichroism spectra of beta-lactoglobulin and its disulfide-cleaved derivative in 4.0 M guanidine hydrochloride suggests the presence of the residual beta-structure in the unfolded state and the stabilization of the beta-structure by disulfide bonds. Thus; if this residual beta-structure is part of the native beta-structure and forms a folding initiation site, the folding reaction of beta-lactoglobulin may not necessarily be inconsistent with the sequential model. The non-native alpha-helices in the burst-phase intermediate may be formed in an immature part of the protein molecule because of the local alpha-helical propensity in this part.  相似文献   

18.
Protein folding occurs on a time scale ranging from milliseconds to minutes for a majority of proteins. Computer simulation of protein folding, from a random configuration to the native structure, is nontrivial owing to the large disparity between the simulation and folding time scales. As an effort to overcome this limitation, simple models with idealized protein subdomains, e.g., the diffusion-collision model of Karplus and Weaver, have gained some popularity. We present here new results for the folding of a four-helix bundle within the framework of the diffusion-collision model. Even with such simplifying assumptions, a direct application of standard Brownian dynamics methods would consume 10,000 processor-years on current supercomputers. We circumvent this difficulty by invoking a special Brownian dynamics simulation. The method features the calculation of the mean passage time of an event from the flux overpopulation method and the sampling of events that lead to productive collisions even if their probability is extremely small (because of large free-energy barriers that separate them from the higher probability events). Using these developments, we demonstrate that a coarse-grained model of the four-helix bundle can be simulated in several days on current supercomputers. Furthermore, such simulations yield folding times that are in the range of time scales observed in experiments.  相似文献   

19.
Dehydration stress in the drought-tolerant resurrection plant Craterostigma plantagineum is accompanied by the accumulation of a large number of desiccation stress proteins (Dsp). One abundant class of these is represented by the dehydrin-related Dsp16 protein which contains 15 amino acid conserved lysine-rich repeats and a stretch of eight serine residues providing extremely hydrophilic characteristics. Recombinant Dsp16 from Craterostigma plantagineum has been cloned and expressed in Escherichia coli. The protein was purified and characterized regarding its physicochemical properties. Irrespective of successful crystallization experiments, dilute aqueous buffer solutions do not display a well-defined three-dimensional structure in terms of the canonical secondary structural elements. 1H-NMR (nuclear magnetic resonance) spectra in aqueous solution are characterized by a small chemical shift dispersion typical for an unfolded protein; however, the observed line-widths are not typical for a highly mobile random coil structure. Instead they indicate an equilibrium between conformational states with preferentially extended substructures. As a consequence of its loose structure, Dsp16 is extremely sensitive towards proteolysis unless its structure is stabilized by structure-making additives such as trifluoroethanol. Denaturants such as guanidinium chloride do not induce cooperative structural transitions. pH-dependent fluorescence changes reflect protonation/deprotonation rather than conformational changes. Sedimentation/diffusion experiments confirm the predicted molecular mass of 16 kDa. Due to the high serine/threonine content and its loose structure, Dsp16 is accessible to phosphorylation, supporting the idea that in situ the structurally relatively undefined protein may be involved in both water binding and phosphorylation.  相似文献   

20.
The apo form of myoglobin has two non-native stable states that have been experimentally characterized. Investigation of these states has suggested possible folding pathways for myoglobin. We have performed molecular dynamics simulations on solvated isolated helices of myoglobin to investigate the relationship between the intrinsic stabilities of the isolated helices and the structure and folding pathway of apomyoglobin. Analyses of hydrogen bonding and fluctuations from simulations at 298 and 368 K are used to explore the relative stabilities of the helices of myoglobin. The ordering observed is A approximately G approximately H > B > E > F, which mirrors both the experimental equilibrium and kinetic data available for apomyoglobin. The experimental observation that a subdomain comprising helices A, G, and H is an important early intermediate and our result that these helices are the most stable suggest that the intrinsically more stable helices form early in the folding process and that this significantly influences the folding pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号