首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The whole-cell configuration of the patch clamp technique was used to record miniature gamma-aminobutyric acidA (GABAA) receptor-mediated currents (in tetrodotoxin, 1 microM and kynurenic acid 1 mM) from CA3 pyramidal cells in thin hippocampal slices obtained from postnatal (P) day (P6-9) old rats. Switching from a Ca2+-containing to a nominally Ca2+-free medium (in which Ca2+ was substituted with Mg2+, in the presence or in the absence of 100 microM EGTA) did not change significantly the frequency or amplitude of miniature events. Superfusion of thapsigargin induced a concentration-dependent increase in frequency but not in amplitude of tetrodotoxin-resistant currents that lasted for the entire period of drug application. Mean frequency ratio (thapsigargin 10 microM over control) was 1.8+/-0.5, (n = 9). In nominally Ca2+-free solutions thapsigargin was ineffective. When bath applied, caffeine (10 mM), reversibly reduced the amplitude of miniature postsynaptic currents whereas, if applied by brief pressure pulses, it produced an increase in frequency but not in amplitude of spontaneous GABAergic currents. Superfusion of caffeine (10 mM) reversibly reduced the amplitude of the current induced by GABA (100 microM) indicating a clear postsynaptic effect on GABAA receptor. Superfusion of ryanodine (30 microM), in the majority of the cells (n = 7) did not significantly modify the amplitude or frequency of miniature events. In two of nine cells it induced a transient increase in frequency of miniature postsynaptic currents. These results indicate that in neonatal hippocampal neurons, mobilization of calcium from caffeine-ryanodine-sensitive stores facilitates GABA release.  相似文献   

2.
In this study we investigated the effects of lambda correction, generalized cross-validation (GCV), and Tikhonov regularization techniques on the realistic Laplacian (RL) estimate of highly-sampled (128 channels) simulated and actual EEG potential distributions. The simulated EEG potential distributions were mathematically generated over a 3-shell spherical head model (analytic potential distributions). Noise was added to the analytic potential distributions to mimic EEG noise. The magnitude of the noise was 20, 40 and 80% that of the analytic potential distributions. Performance of the regularization techniques was evaluated by computing the root mean square error (RMSE) between regularized RL estimates and analytic surface Laplacian solutions. The actual EEG data were human movement-related and short-latency somatosensory-evoked potentials. The RL of these potentials was estimated over a realistically-shaped, magnetic resonance-constructed model of the subject's scalp surface. The RL estimate of the simulated potential distributions was improved with all the regularization techniques. However, the lambda correction and Tikhonov regularization techniques provided more precise Laplacian solutions than the GCV computation (P < 0.05); they also improved better than the GCV computation the spatial detail of the movement-related and short-latency somatosensory-evoked potential distributions. For both simulated and actual EEG potential distributions the Tikhonov and lambda correction techniques provided nearly equal Laplacian solutions, but the former offered the advantage that no preliminary simulation was required to regularize the RL estimate of the actual EEG data.  相似文献   

3.
Nitric oxide (NO) generated by gamma interferon (IFN-gamma) activation of macrophages mediates the killing of many intracellular pathogens. IFN-gamma is essential to innate resistance to Shigella flexneri infection. We demonstrate that NO is produced following S. flexneri infection both in mice and in activated cells in vitro and that while it is able to kill S. flexneri in a cell-free system, it is not required for clearance of S. flexneri in either infected mice or in activated cells in vitro.  相似文献   

4.
We know that upper body obesity is associated with metabolic complications, but we don't know how regional body fat distribution influences postprandial lipemia in obese adults. Thus, this study explored the respective effects of android or gynoid types of obesity and fasting triglyceridemia on postprandial lipid metabolism and especially triglyceride-rich lipoproteins. Twenty-four obese and 6 lean normotriglyceridemic women (control), age 24-57 yr, were enrolled. Among obese women with an android phenotype, 9 exhibited normal plasma triglyceride levels (mean: 1.38 mmol/L) (NTAO), and 7 displayed a frank hypertriglyceridemia (mean: 2.40 mmol/L) (HTAO). The 8 patients with a gynoid phenotype had normal triglyceride levels (mean: 1.00 mmol/L) (GO). All were given a mixed test meal providing 40 g triglycerides. Serum and incremental chylomicron triglycerides 0-7 h areas under the curve (AUCs) as well as triglyceride levels in apoB-48-containing triglyceride-rich lipoprotein (TRLs) or chylomicrons were significantly higher in HTAOs and NTAOs than in GOs and controls postprandially. The size of chylomicron particles was bigger in controls and GOs than in HTAOs and NTAOs postprandially. Android obese subjects showed abnormally elevated fasting apoB-48 and apoB-100 triglyceride-rich lipoprotein (TRL) levels. Most abnormalities that were found correlated to plasma levels of insulin and apoC-III. In conclusion, an abnormal postprandial lipid pattern is a trait of abdominal obesity even without fasting hypertriglyceridemia.  相似文献   

5.
The effect of L-deprenyl (selegiline) on the excitatory synaptic transmission was characterized in the CA1 neurons of rat hippocampal slices by using a intracellular recording technique. Superfusion of L-deprenyl (0.1-10 microM) reversibly decreased the EPSP, which was evoked by orthodromic stimulation of the Schaffer collateral-commissural afferent pathway in a concentration-dependent manner. The sensitivity of postsynaptic neurons to the glutamate receptor agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid or N-methyl-D-aspartate, was not affected by L-deprenyl (1 microM) pretreatment. In addition, L-deprenyl (1 microM) clearly increased the magnitude of paired-pulse facilitation regardless of the interstimulus intervals of 20 to 300 msec used. The ability of L-deprenyl to decrease the EPSP amplitude was not observed in the dopamine-depleted rats. Pargyline and 4-phenylpyridine, the monoamine oxidase type B inhibitors, mimicked the depressant effect of L-deprenyl on the EPSP. Moreover, the reduction of L-deprenyl (1 microM) on the EPSP amplitude was specifically antagonized by sulpiride (0.01-0.1 microM), a selective dopamine D2 receptor antagonist. However, the dopamine D1 receptor antagonist, SKF-83566 (1-10 microM), did not significantly affect L-deprenyl's action. These results indicate that the monoamine oxidase type B inhibitory ability leading to an increase of the dopaminergic tonus in the hippocampus is involved in the L-deprenyl-induced depression of excitatory synaptic transmission in the CA1 region of the rat hippocampus. Moreover, application of L-deprenyl (1 and 10 microM) also reversibly suppressed the epileptiform activity evoked by picrotoxin.  相似文献   

6.
Although the ventral striatum (nucleus accumbens; NAc) and dorsal striatum are associated with different behaviors, these structures are anatomically and physiologically similar. In particular, dopaminergic afferents from the midbrain appear to be essential for the normal functioning of both nuclei. Although a number of studies have examined the effects of dopamine on the physiology of NAc or striatal cells, results have varied, and few studies have compared directly the actions of dopamine on both of these nuclei. Here we use slice preparations of the NAc and dorsal striatum to compare how synaptic transmission in these nuclei is modulated by catecholamines. As previously reported, dopamine depressed excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in the NAc. Surprisingly, however, neither EPSPs nor IPSPs in the dorsal striatum were affected by dopamine. Similarly, norepinephrine depressed excitatory synaptic transmission in the NAc by an alpha-adrenergic receptor-dependent mechanism but was without effect on excitatory transmission in the dorsal striatum. Inhibitory synaptic transmission was not affected by norepinephrine in either structure. These results suggest that the functional roles of dopamine and norepinephrine are not the same in the dorsal striatum and the NAc.  相似文献   

7.
To elucidate the mechanism underlying epileptiform discharges in kindled rats, synaptic responses in kindled basolateral amygdala neurons in vitro were compared with those from control rats by using intracellular and whole cell patch-clamp recordings. In kindled neurons, electrical stimulation of the stria terminalis induced epileptiform discharges. The resting potential, apparent input resistance, current-voltage relationship of the membrane, and the threshold, amplitude, and duration of action potentials in kindled neurons were not different from those in control neurons. The electrical stimulation of stria terminalis elicited excitatory postsynaptic potentials (EPSPs) and DL-2-amino-5-phosphonopentanoic acid (AP5)-sensitive and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive excitatory postsynaptic currents (EPSCs). The amplitude of evoked EPSPs and of evoked AP5-sensitive and CNQX-sensitive EPSCs were enhanced markedly, whereas fast and slow inhibitory postsynaptic potentials (IPSPs) induced by electrical stimulation of lateral amygdaloid nucleus were not significantly different. The rise time and the decay time constant of the evoked CNQX-sensitive EPSCs were shortened, whereas the rise time of the evoked AP5-sensitive EPSCs was shortened, but the decay time constants were not significantly different. In both tetrodotoxin (TTX)-containing medium and low Ca2+ and TTX-containing medium, the frequency and amplitude of spontaneous EPSCs were increased in kindled neurons. These increases are presumably due to nearly synchronous multiquantal events resulted from the increased probability of Glu release at the nerve terminals. The rise time of evoked CNQX- and AP5-sensitive EPSCs and the decay time constant of evoked CNQX-sensitive EPSCs were shortened, suggesting that excitatory synapses at the proximal dendrite and/or the soma in kindled neurons may contribute more effectively to generate evoked EPSCs than those at distal dendrites. In conclusion, the increases in the amplitudes of spontaneous and evoked EPSCs and in the frequency of spontaneous EPSCs may contribute to the epileptiform discharges in kindled neurons.  相似文献   

8.
beta-Amyloid has been shown to be neurotoxic in vivo and in vitro. Free radical production and subsequent lipid oxidation after beta-amyloid application have been observed in vitro and are considered to be factors that contribute to the neurotoxicity. Field recordings in the area CA1 for 3 weeks showed a dose-dependent effect on amplitude after intracerebroventricular (i.c.v.) injections of 1, 5 or 10 nmol beta-amyloid (25-35). The nitric oxide synthase inhibitors 7-nitro indazole (30 mg/kg, i.p.) and 1-(2-trifluoromethylphenyl)imidazole (150 nmol, i.c.v.) which preferentially inhibit the neuronal isoform prevented this beta-amyloid-induced decay of synaptic transmission. The protective effect of these inhibitors was reversed by L-arginine (200 mg/kg, i.p.). The results support the theory that nitric oxide production contributes to beta-amyloid-induced neuronal degeneration or reduction of neurotransmission.  相似文献   

9.
The hip abductor muscles are considered important for gait and biomechanics of the hip joint; however, their specific function has not been defined precisely. The intensity of magnetic resonance imaging signals in skeletal muscle has been reported to increase immediately after exercise. Making use of this phenomenon, we evaluated the hip abductor muscles. Magnetic resonance imaging was performed after isometric exercise of the hip abductor in three positions (20 degrees of abduction, neutral, and 20 degrees of adduction). The abduction force of the hip was measured with a dynamometer, and electromyographic measurements were made simultaneously for the same hip positions. Additionally, magnetic resonance imaging was performed after one-legged stance. As the hip was more adducted, the signal intensity increased on the scans. The values for muscle force, as evaluated with the dynamometer and integrated electromyography, also supported the results. The increase in signal intensity of the gluteus minimus at 20 degrees of abduction and after one-legged stance was significantly greater than that of the gluteus medius (p < 0.0001 and p < 0.0001, respectively). The results of this study indicate that the gluteus minimus muscle, along with the gluteus medius, plays an important role in hip abduction, gait, and stabilization of the pelvis.  相似文献   

10.
Pemoline, a central stimulant, administered systemically at high doses (300 mg/kg) reliably produces self-biting behavior in rats. Pemoline-induced self-biting shares many similarities with self-injury seen in certain human disorders. Recent evidence has shown that alterations in neostriatal neurochemistry accompany the self-biting behavior seen in the rat. The present study used intracellular electrophysiological techniques to reveal changes in neostriatal cellular physiology in slices from rats which had displayed self-injury. Depolarizing postsynaptic potentials (DPSPs) were examined in neostriatal slices from rats that received pemoline and had been engaging in self-injurious behavior and from two control populations: rats that received the same concentration of pemoline and did not engage in self-biting, and rats that received vehicle alone (peanut oil). Data were acquired in standard artificial cerebral spinal fluid. DPSPs were evoked by cortical electrical stimulation in the slice. In neurons from rats that received the vehicle or that had received pemoline but had not engaged in self-injury, dopamine (DA, 20 microM) application produced a significant decrease in the size of the cortically evoked neostriatal DPSP. In contrast, DA application produced an increase in DPSP size in neurons from rats which had received pemoline and had engaged in self-injury. Bath application of a combination of D1 and D2 receptor agonists best replicated the enhancing effect of DA. Furthermore, the enhancement could be blocked by pretreatment with the competitive N-methyl-d-aspartate receptor antagonist, 2-amino-5-phosphonopentanoic acid. The results indicate that alterations in neostriatal DA-glutamate interactions accompany pemoline injections which produce self-injurious behavior.  相似文献   

11.
We have studied the effect of various agents on the decreases in striatal levels of dopamine (DA) and its metabolites which were observed 14 days after an intracerebroventricular (i.c.v.) administration of 50 micrograms 6-hydroxydopamine (6-OHDA) to mice. A pretreatment of mice with either a tyrosine hydroxylase inhibitor (alpha-methyl-p-tyrosine), a D2 receptor agonist (bromocriptine) or antagonist (haloperidol), or a vesicular uptake inhibitor (tetrabenazine) did not modify the 6-OHDA-induced decreases in DA and metabolites, indicating that DA synthesis, vesicular storage and neuronal firing rates are not mainly involved in the 6-OHDA-induced toxicity on the DA neurons. Conversely, a pretreatment with L-DOPA + benserazide potentiated the 6-OHDA-induced decreases in striatal levels of DA, homovanillic acid and 3-methoxy-tyramine. This effect was not due to an increased 6-OHDA uptake via the neuronal carrier since a pretreatment with L-DOPA + benserazide, performed 1-1.5 h before sacrifice, decreased the apparent affinity of the uptake, an effect which disappeared when considering the total DA concentration present in incubation medium ([3H]DA and cold released DA). In conclusion, potentiation of the 6-OHDA neurotoxicity by L-DOPA rises again the important problem of the safety of the latter drug in therapeutics.  相似文献   

12.
The whole-cell mode of patch-clamp techniques was used to investigate the effect of vasoactive intestinal polypeptide (VIP) on spontaneous gamma-aminobutyric acid (GABA)-mediated inhibitory postsynaptic currents (IPSCs) of cultured hippocampal neurons. Application of VIP caused a significant increase in the frequency of spontaneous IPSCs with a reversible and dose-dependent manner. VIP had no effect on the mean amplitude and kinetic parameters of spontaneous IPSCs. In the presence of tetrodotoxin, VIP increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) without affecting their mean magnitude. Forskolin, but not its inactive analog 1,9-dideoxyforskolin, mimicked the stimulatory effect of VIP on spontaneous IPSCs and mIPSCs. VIP and forskolin failed to modulate GABAergic IPSCs in the presence of Rp-cAMPs, a cell permeable antagonist of cAMP-dependent protein kinase (PKA). Calcium channel blocker CdCl2 did not prevent VIP and forskolin from increasing the frequency of mIPSCs. These results suggest that the activation of presynaptic VIP receptor enhances the GABAergic synaptic transmission in cultured hippocampal neurons through the cAMP-PKA pathway and that VIP is likely to increase GABA release by directly stimulating the vesicular release apparatus.  相似文献   

13.
1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.  相似文献   

14.
Dorsal root afferents form synaptic connections on motoneurons a few days after motoneuron clustering in the rat lumbar spinal cord, but frequent spontaneous synaptic potentials are detected only after birth. To increase our understanding of the mechanisms underlying the differentiation of synaptic transmission, we examined the developmental changes in properties of spontaneous synaptic transmission at early stages of synapse formation. Spontaneous postsynaptic currents (PSCs) and tetrodotoxin (TTX)-resistant miniature PSCs (mPSCs) were measured in spinal motoneurons of embryonic and postnatal rats using whole cell patch-clamp recordings. Spontaneous PSC frequencies were higher than mPSC frequencies in both embryonic and postnatal motoneurons, suggesting that even at embryonic stages, when action-potential firing rate was low, presynaptic action potentials played an important role in triggering spontaneous PSCs. After birth, the twofold increase in spontaneous PSC frequency was attributed to an increase in action-potential-independent quantal release rather than to a higher rate of action-potential firing. In embryonic motoneurons, the fluctuations in peak amplitude of spontaneous PSCs were normally distributed around single peaks with modal values similar to those of mPSCs. These data indicated that early in synapse differentiation spontaneous PSCs were primarily composed of currents generated by quantal release. After birth, mean mPSC amplitude increased by 50% but mean quantal current amplitude did not change. Synchronous, multiquantal release was apparent in postnatal motoneurons only in high-K+ extracellular solution. Comparison of the properties of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) demonstrated that mean mEPSC frequency was higher than mIPSC frequency, suggesting that either excitatory synapses outnumbered inhibitory synapses or that the probability of excitatory transmitter release was higher than the release of inhibitory neurotransmitters. The finding that mIPSC duration was several-fold longer than mEPSC duration implied that despite their lower frequency, inhibitory currents could modulate motoneuron synaptic integration by shunting incoming excitatory inputs for prolonged time intervals.  相似文献   

15.
The effects of midazolam, one of the most popular benzodiazepines, on synaptic transmissions were compared with intracellular recordings between CA1 pyramidal cells (CA1-PCs) and dentate gyrus granule cells (DG-GCs) in rat hippocampal slices. First, we studied the effects of midazolam on orthodromically evoked spikes, membrane properties and synaptic potentials. Secondly, the effects of a GABA(A) receptor agonist, muscimol, were examined on membrane properties to determine whether or not the densities of GABA(A) receptors are different between CA1-PCs and DG-GCs. Midazolam (75 microM) markedly depressed orthodromically evoked spikes in CA1-PCs, compared with those in DG-GCs. A GABA(A) receptor antagonist, bicuculline (10 microM), almost completely antagonized the depressant effects of midazolam on spike generation in CA1-PCs, whereas it had little effect on midazolam in dentate gyrus granule cells. Midazolam produced either depolarizing or hyperpolarizing effects on resting membrane potentials (Vm) with an input resistance decrease in CA1-PCs, whereas it produced depolarized Vm in DG-GCs. Midazolam significantly increased the amplitude of monosynaptic inhibitory postsynaptic potentials in CA1-PCs, whereas midazolam slightly decreased these in DG-GCs. Midazolam significantly decreased the amplitude of excitatory postsynaptic potentials both in CA1-PCs and DG-GCs. Muscimol (100 microM) produced either depolarizing or hyperpolarizing effects on Vm with an input resistance decrease in CA1-PCs, and it depolarized Vm with an input resistance decrease in DG-GCs. These results demonstrate that midazolam has differential effects on excitatory and inhibitory synaptic transmissions in hippocampal neurons. The mechanism of this difference could be partly due to the different types of GABA(A) receptors between CA1-PCs and DG-GCs.  相似文献   

16.
1. The aims of the present study were to detect changes in superoxide anion (O2.-), nitric oxide (NO) and other reactive oxygen species (ROS) directly by measurement of chemiluminescence (CL) and to investigate the role of L-arginine, a nitric oxide synthase (NOS) substrate, and NG-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, together with their molecular enantiomers D-arginine and D-NAME, in a rat mesenteric ischaemia-reperfusion (I/R) model. 2. Seventy-nine female Wistar albino rats were divided into eight groups. The first three groups underwent sham operation; group 1 was the control group, group 2 received L-arginine and group 3 received L-NAME. Ischaemia was produced in the remaining five groups by ligation of the superior mesenteric artery for 30 min followed by 60 min reperfusion. Group 4 rats were control I/R rats and groups 5-8 received either L-arginine, L-NAME, D-arginine or D-NAME, respectively. 3. Both luminol and lucigenin CL was significantly increased in I/R groups compared with sham-operated groups. L-Arginine significantly reduced CL measurements. D-Arginine was also protective, but not as much as L-arginine. Both L- and D-arginine had in vitro O2.- (-)scavenging potential, as tested by the xanthine-xanthine oxidase system. NG-Nitro-L-arginine methyl ester decreased lipid peroxidation values in addition to reducing CL measurements. Nitric oxide concentrations were significantly increased in I/R groups in comparison with sham-operated groups. Peroxynitrite formation was increased by I/R. Treatment with L-NAME was beneficial by reducing NO concentrations in the reperfused ileum. 4. In our I/R model, O2.-, NO and other ROS were increased. Although NOS inhibitors were effective in reducing oxidative damage, increasing NO concentrations with L-arginine was also beneficial, presumably due to the ability of L-arginine to inhibit phagocyte adherence and its radical scavenging potential. In fact, NO may have different effects in terms of tissue injury or protection depending on the concentration of oxygen and the haemodynamic state of the tissue.  相似文献   

17.
Inherited susceptibility to breast cancer has been an area of intense investigation for the past 10 years. Early work focused on identifying modes of transmission, which culminated in the identification of chromosome 17q12-21 as the first human genomic region that harbored an autosomal dominant susceptibility gene for breast cancer (BRCA1) in 1990. BRCA1 was subsequently identified and was followed shortly by the identification of BRCA2. Research in the past 3 years has elucidated much about the mutation spectrum and mutation frequency of these genes in specific populations and is beginning to identify potential functions. Whereas progress in this area has been rapid and much is now known about inherited susceptibility to breast cancer, much more needs to be done to make these discoveries useful in the diagnosis, treatment, and ultimately, the prevention of breast cancer.  相似文献   

18.
The properties of central ATP-mediated synaptic currents were studied using whole-cell patch-clamp recording in rat medial habenula slices. Release was shown to be calcium dependent with a Hill coefficient of approximately 2. The voltage dependence of synaptic current amplitudes was approximately linear. Some reduction of the synaptic current amplitudes was observed at 10 mM extracellular calcium, suggesting calcium block/permeability of the channels. This was confirmed by observation of current-voltage reversal potentials in different calcium concentrations. We estimate that the channels underlying half the synapses showed a negligible calcium permeability. In the other four out of eight synapses the results suggest a very high calcium permeability with an estimated PCa/PCs of > 10. Thus, at -70 mV, in 1 mM calcium, more than 15% of the ATP-mediated synaptic current is estimated to be carried by calcium, but only at synapses with calcium-permeable channels. Net current through these synaptic channels is also controlled by the voltage dependence of synaptic current decay time constants (increasing e-fold for 158 mV depolarization) and by a strong dependence of transmitter release on the frequency of stimulation of the presynaptic neurone, with failure rates increasing 3-fold as stimulation rates were increased from 1 to 10 Hz.  相似文献   

19.
Cholinergic synaptic modulation in the rat visual cortex was studied using intracellular recordings from slice preparations. A cholinergic agonist, carbachol (CCh), reduced fast excitatory as well as fast and slow inhibitory postsynaptic potentials evoked by white matter stimulation. This effect was antagonized by atropine. CCh perfusion did not reduce glutamate- or gamma-aminobutyric acid-induced depolarizations, suggesting the presynaptic mechanism of the suppression. CCh augmented firing over a long period after transsynaptic stimulation combined with a long depolarizing current pulse, not only due to a decrease in firing accommodation but also due to disinhibition. CCh also induced a large sustained depolarization and bursting of action potentials triggered by tetanic stimulation. These results suggest that cholinergic modulation results in a prolonged increase in neuronal excitability during the late phase of synaptic transmissions at least partly by the mechanism of decreasing inhibitory transmissions, particularly when the synaptic inputs are strongly activated.  相似文献   

20.
We examined the functionality of hippocampal CA1 neurons at early times after transient global ischemia, by electrophysiologic recordings in brain slices. Transient ischemia was conducted on rats using the method of 15-minute four-vessel occlusion, and brain slices were obtained from these animals at different times after ischemia. Within 24 hours after insult, CA1 neurons showed no substantial damage as identified by morphologic means, but exhibited dramatic decreases in synaptic activities by 12 hours after insult, which became further decreased at more extended times after recovery. Blocking gamma-aminobutyric acid A (GABAA) receptors with bicuculline produced a reversible augmentation of the diminished synaptic responses in slices prepared from 12-hour postinsult animals, but failed to do so in slices obtained from rats 24 hours after insult. Recorded in whole-cell mode, the minimum depolarizing current required to elicit an action potential was about twofold larger in the ischemic CA1 neurons than in sham controls, suggesting that an elevated spiking threshold exists in these neurons. We suggest that decreases in electrophysiologic activities precede the morphologic deterioration in postischemic CA1 neurons. The early decrease in CA1 synaptic activities may be associated with an imbalance between glutamate-mediated synaptic excitation and GABAA-mediated synaptic inhibition, whereas substantial impairments in synaptic transmission likely take place after prolonged post-ischemic recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号