共查询到19条相似文献,搜索用时 187 毫秒
1.
2.
Camshift算法需要手动标定目标区域,且具有无法适应目标的高速运动、相似颜色背景和遮挡等情况的局限性。针对这些情况提出结合帧间差分法和背景差分相结合的方法对Camshift算法进行改进。首先利于帧间差分和背景差分相结合检测出运动目标区域。然后用该区域初始化跟踪目标窗口。当有相似颜色背景干扰或遮挡情况发生时,利用检测出的运动目标区域对搜索窗口进行限制。同时,使用Kalman滤波对下一帧的搜索窗口进行预测,从而使该算法适合高速运动目标的跟踪。实验表明该算法能够准确对目标窗口进行初始化,且在目标高速运动、遮挡、和相似颜色背景干扰情况下,仍能进行适时实时有效跟踪。 相似文献
3.
运动目标检测是计算机视觉中目标跟踪和目标分类的基础,其已经应用于水下机器人执行水下任务和海洋生态研究.水下环境中复杂的场景和不良的照明条件往往使对运动目标的检测变得困难.为了解决上述问题,我们提出了一种将背景差分和三帧差分相结合的方法.在这种方法中,首先,我们分别通过背景差分和三帧差分检测运动物体像素.接下来,我们对背景差分和三帧差分的结果进行"与"运算,背景差分提供了对象的信息,以补充三帧差分检测到的不完整的信息.最后,利用形态学处理来消除背景中由非静态物体引起的噪声.实验结果表明,该方法对从水下视频中运动物体检测,具有可靠并有效的效果. 相似文献
4.
5.
为解决运动目标检测算法复杂、图像数据处理量大的缺陷以及有效提取运动目标的的位置、大小、形状等信息,利用基于卡尔曼滤波的估计技术改进背景差分算法,然后根据背景灰度值偏差自适应阈值准确分割运动目标区域。在CCS2.2集成开发环境下将算法通过SEDD-XD510PLUS仿真器移植到以TMS320DM642为核心处理器的硬件平台上,以安瓿针剂杂质为检测对象反复实验,验证了基于卡尔曼滤波背景估计的运动目标检测算法的高效性,此法能很大程度上克服光照强度变化的影响,准确地检测出运动目标区域,为后续跟踪、识别等处理提供良好的条件。 相似文献
6.
针对传统运动目标检测方法存在的缺点和不足,在对现有目标检测算法进行分析对比的基础上,设计并实现了一种简单有效的目标检测方案。首先提出了一种基于像素灰度归类和单高斯模型的背景重构算法,进而以此为基础采用背景差分法进行目标的检测,同时采用分层背景更新算法较好地解决了拖影和光照大面积变化的情况,最后给出了一种解决阴影的简单算法。实验结果表明,该算法高效、快速,可以满足实时检测的需要。 相似文献
7.
针对非参数核密度估计算法前景检测不够精确、运算量大的问题,提出了一种基于背景差分图像的核密度估计前景检测方法。该方法结合了单高斯模型和核密度估计模型进行初始背景建模,利用背景差分图像,过滤掉非动态背景区域,对动态背景区域采用核密度估计进行像素分类。同时,对非动态背景区域,采用渐进式更新;对动态背景区域,采用非参数核密度估计进行更新。实验结果表明,该算法能够精确地分割出前景目标,减少了误检噪声,降低了运算量。 相似文献
8.
基于HSI模型的彩色图像背景减法 总被引:4,自引:0,他引:4
提出了一种基于HSI模型的彩色图像背景差法,充分考虑了色度(H)、饱和度(S)、亮度(I)三者之间的关系.根据H、S分量与I分量相互独立的特点,综合利用H分量和S分量新建背景亮度信息,根据亮度信息,采用动态阈值提取出精确的前景对象.该算法高速有效,对噪声和光线的变化有较强的鲁棒性. 相似文献
9.
针对复杂场景下运动目标的精确检测这一问题,提出一种对噪声鲁棒并具备灰度尺度不变性的局部纹理特征描述子LBP_Center,将其与像素的颜色信息结合应用于背景建模中,采用随机抽样的机制更新模型,同时引入背景复杂度以去除多模态动态背景产生的噪点。在标准测试数据集上的实验结果表明,该算法对柔性阴影及光照缓慢变化具备良好的鲁棒性,综合性能更优。 相似文献
10.
11.
本文首先概述了目标提取的诸多算法,然后针对复杂背景下的运动目标提取,重点研究了帧间图像差分算法,设计了一种目标提取算法模型,最后提出了一种基于对象的目标提取方法并进行了仿真实验。 相似文献
12.
基于时空背景差的运动目标检测算法 总被引:5,自引:0,他引:5
假定图像序列的背景图像已经获得,提出一种基于时空背景差的运动目标检测算法.该算法融合背景差分、基于时间信息的帧间差分及基于空间信息的背景差分信息,得到真实运动物体的运动种子点,认为背景差分图像中包含运动种子点的连通区域为真实的前景目标,从而可以检测出正确而完整的前景目标.仿真实验表明,该算法可以避免背景模型对场景的表征不足及背景更新阶段造成的错误检测,即使在场景中存在微小运动的复杂环境下,仍能实现准确的运动分割. 相似文献
13.
基于背景差分和三帧差分的运动目标检测 总被引:1,自引:0,他引:1
柴池 《网络安全技术与应用》2014,(11):75-76
为了提高运动目标检测算法的准确性和对背景变化的适应性,本文采用了三帧差分与基于单高斯模型背景差分法相结合的算法,并通过最大类间方差法提取自适应阈值。引入一个新的背景更新机制,当运动物体融入背景或者背景中物体移除时,将背景更新为当前视频帧。实验结果表明,本文算法在对运动目标进行检测时,不易受背景光线变化及运动物体融入背景等因素的影响,适用于无人监控环境。 相似文献
14.
提出了背景置信度图像和背景标示图像的概念,给出了一种基于背景重建和象素最小距离(M DBP)的自动视频对象分割方法。首先运用基于背景置信度图像和背景标示图像的背景重建技术从视频序列的多帧图像中重建出可靠的背景图像,然后运用差背景法分割视频对象(VO),同时再利用象素最小距离(M D BP)和总体象素最小距离(W M DBP)准则对分割出的视频对象图像进行处理,克服由于背景的微小变化而引起的前景对象的错误检测。试验结果表明该文给出方法能够较好地重建背景,对于背景静止的视频能够得到更好的分割结果。 相似文献
15.
针对ViBe算法在相机抖动和树叶晃动的动态背景下,出现的误检率高和准确度低的问题,提出一种改进的ViBe算法。该算法选取多帧使用基于Canny的三帧差分改进算法进行背景建模;在背景模型更新时根据背景复杂程度设置调整因子,调整阈值和背景模型更新率适应动态背景的检测;为提高检测目标的完整性,改进的ViBe算法得到的前景目标,与三帧差分算法结合并且进行形态学处理完成对运动目标的提取。实验结果表明,改进的算法在树枝晃动、相机抖动的复杂背景下,检测目标的准确度和完整性提高了。 相似文献
16.
在充分研究现有运动目标检测算法的基础上,针对当前常用运动目标检测算法易受光照和噪声的影响,不易提取完整运动目标,提出了一种新的结合SACON背景模型与五帧差分法的运动目标检测算法.对传统的SACON算法进行改进得到运动区域,与五帧差分算法提取的运动目标相结合,采用动态阈值以适应光线突变,通过孔洞填充等后处理,综合得到运动前景图像.该算法有效地处理了孔洞和噪声问题,具有很好的实时性以及抗干扰能力,能够精确地检测出运动目标. 相似文献
17.
针对经典视觉背景提取算法因初始帧存在运动目标易产生鬼影以及对扰动背景适应性差的问题,提出一种改进ViBe算法;利用改进三帧差分法和最小外接矩形定位初始帧运动目标,并通过局部初始化的方法进行鬼影抑制;在背景模型初始化阶段,定义灰度相似函数从时域和空域信息中中等比例选取像素点建立背景模型,增强背景模型的鲁棒性;在前景检测检测阶段,通过平均差法衡量样本集合的离散度,构建自适应分割阈值代替原有的固定分割阈值以适应背景扰动;实验表明,改进算法可以有效抑制鬼影产生并且提高算法在扰动背景下的适应性和检测准确度。 相似文献
18.
文章针对视频图像的特点,提出一种基于背景差分法的运动目标区域检测算法。该算法利用当前图像与背景图像作差分,并采用一阶Kalman滤波实现动态背景图像的更新,接着采用自适应阈值法进行运动区域分割,经过滤波处理即可得到运动目标区域。实验结果表明所提出的算法具有较理想的效果。 相似文献