首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用计算流体力学软件Fluent,对H_2/空气预混气在全填充多孔介质平板微燃烧器内的燃烧过程进行数值模拟.研究了多孔介质导热系数、壁面导热系数、当量比、孔隙率对微燃烧器回热循环的影响规律.模拟结果表明:预热区对流回热效率、多孔介质导热效率与多孔介质导热系数呈正相关趋势;壁面导热系数增大会使预热区对流回热效率下降,壁面对流回热效率上升;预热区对流回热效率、壁面对流回热效率与当量比呈负相关趋势;多孔介质孔隙率是影响回热效率的重要因素,随着孔隙率的增大,预热区对流回热效率下降,壁面对流回热效率上升.  相似文献   

2.
天然气在惰性多孔介质内的预混燃烧是一个包含燃烧、辐射、对流及导热的复杂过程,从数学模拟的角度,比较了几种不同的甲烷-空气化学反应模型,研究了多孔介质内辐射传递方程的不同求解方法,并且分析了多孔介质的导热系数、对流换热系数等对燃烧器性能的影响。  相似文献   

3.
为研究纳米流体稳定性并增强换热机理,在乙二醇/去离子水基液中,采用原液化学生长法制备了不同质量浓度(1%,2%,3%,4%和5%)的氧化硅-乙二醇/水纳米流体,通过Zeta电位测量和透射扫描电镜实验表征纳米流体的稳定性。实验测量并研究了温度和质量浓度对纳米流体的导热系数和粘度的影响。依据实测结果,利用格子玻尔兹曼方法对圆管内纳米流体的流动与换热特性进行数值模拟研究。结果表明:二氧化硅颗粒在基液中具有良好的稳定性;纳米流体的导热系数随温度和质量浓度的提高而增大;纳米流体的加入可以显著提高基液的对流换热系数,当质量浓度为5%时对流换热系数的提高幅度可达到25.5%。  相似文献   

4.
采用20步反应机理模拟了H2/空气在内径2 mm长20 mm的圆管内的预混燃烧.H2/空气预混火焰由壁面向中心传播,呈圆锥形.随着气流向后流动,燃烧区域截面温度曲线由"U"形变为"M"形,后又变为倒"U"形,分别对应壁面加热预混气体的过程,预混燃烧火焰由近壁面向中心传播的过程和燃烧后气体对外散热过程.微燃烧器对外散热量较大,约占总输入热的10%左右,其中燃烧段散热约占5%.辐射散热在壁面散热中占主导地位,占总散热的80%~90%,外壁低辐射系数的材料有利于减少散热和增加燃烧稳定性.对微燃烧而言,燃烧器壁厚增加使燃烧器散热增加,反而不利于降低燃烧器散热.燃烧器入口处壁温与壁面导热系数、壁厚不呈单调变化趋势.在导热系数为3~20 W/(m·K)、壁厚为1 mm左右时,燃烧器入口处壁温较高,有利于稳定燃烧.  相似文献   

5.
提出了考虑小通道内流体温度变化时测量管内对流换热系数的扩展温度振荡法模型,该法可用于测量各种光滑表面通道内流动的局部对流换热系数。实测了典型压力温度条件下2mm内径不锈钢圆管内超临界CO2对流换热系数。  相似文献   

6.
用数值方法研究了密闭容器内半透过性流体在辐射光的照射下产生的自然对流对传热的影响。基于二维假设下的流体流动和热量传递的动态数学模型,并用有限差分方向交替法进行数值求解,得到了稳态下的对流换热系数。结果表明,流体的自然对流受倾斜角度和光学厚度的影响,而传热又受自然对流的影响,对流换热系数的大小与密闭容器内自然对流的强度密切相关。局部换热系数沿透过板内侧的分布与密闭容器的放置角度有关,垂直放置时为从下至上逐渐增大,水平放置时,呈波浪形分布,倾斜角度从π/2减少至0时,由从下至上逐渐增大的分布变为波浪形的分布,垂直和水平放置时的平均换热系数都随光学厚度的增大而增大。  相似文献   

7.
新型传热工质纳米流体的研究与应用   总被引:2,自引:0,他引:2  
介绍了一种在强化传热领域具有广阔应用前景的新型传热(冷却)工质——纳米流体,分析了纳米流体的导热机理、导热性能以及影响其导热系数的各种因素,阐述了纳米流体对流换热性能的研究、纳米流体的制备及其稳定性和应用前景。  相似文献   

8.
以水和空气在钢管中的热充分发展的层流过程为对象,通过数值计算分析了轴向导热给圆管内对流换热的一维壁面导热带来的误差。在二维导热模型的基础上,添加等热流、绝热边界条件,用Fortran语言编写数值计算程序进行计算,定义了相对误差。结果表明,相对误差近似和壁厚与内径的比值成正比,而不同的流体介质数值大小不同。  相似文献   

9.
《热能动力工程》2001,16(4):418-420
提出了考虑小通道内流体温度变化时测量管内对流换热系数的扩展温度振荡法模型,该法可用于测量各种光滑表面通道内流动的局部对流换热系数.实测了典型压力温度条件下2mm内径不锈钢圆管内超临界CO  相似文献   

10.
在不添加任何分散剂和改变pH值的情况下,通过两步法将比表面积为150 m~2/g的气相SiO_2纳米颗粒制备成均匀稳定、透明度高、分散性能好的纳米流体。并对该功能性纳米流体进行了导热系数、黏度、表面张力和壁面接触角的测量。低体积分数下,功能性纳米流体较基液的导热系数几乎没有变化,但黏度却有较大改变。传统固液两相混合物黏度模型不再适用功能性纳米流体的计算,其主要原因是传统公式低估了分子间作用力对纳米流体黏度的影响。因此,建立了功能性纳米流体的黏度经验公式。由于纳米颗粒的存在提高了沸腾表面的粗糙度,从而使纳米流体的壁面湿润性能大大提高。实验结果表明,纳米流体的黏性和壁面接触角是沸腾换热发生骤变的关键。  相似文献   

11.
Flame stability in an annular heat recirculating microcombustor burning stoichiometric hydrogen-air mixture was explored by means of a rigorous thermal analysis. The analysis is based on computational fluid dynamics model of reacting fluid flow accounting for interactions in flow, species, and conjugate thermal field in fluid and solid. Consideration of thermal diffusion effects in the model was necessary for realistic predictions in all the cases. Flame stability under different inlet velocity and wall thermal conductivities was studied. Results showed that a stable flame could stabilize in this combustor in the velocity range of 3-35 m/s. However, the upper stability limit widened for lower wall thermal conductivity. Low velocity flashback and high velocity blowout bounded the stability region with respect to inlet velocity for lower thermal conductivity wall material. Lower flame stability limit was influenced by thermal design of the microcombustor that prevented flame extinction and ability of flame to stabilize at the heated wall even at higher inlet velocity controlled the upper flame stability limit. Flame established well within the combustor for the lowest wall thermal conductivity without blowout and approached flashback for the highest conductivity when wall thermal conductivity was varied at constant inlet velocity. Relative importance of axial and radial wall heat conduction in flame stabilization was explored at the extremes of operating conditions. Both the components played equally important roles in flame stabilization by influencing heat recirculation and losses within the microcombustor. A suitable combination of structural materials could provide a stable flame with high surface temperatures in a lightweight system.  相似文献   

12.
预混天然气小尺度燃烧特性的CFD研究   总被引:3,自引:0,他引:3  
运用计算流体力学(CFD)二维模型研究预混天然气在小尺度空间内燃烧及墙壁的导热系数、外部的热损对燃烧特性的影响。研究表明,墙壁的导热系数和外壁面的热损直接影响着火焰的点燃、稳定及氮氧化物的生成。对于预混气体。仅存在一个很小的流速区间能维持通道内的燃烧。最后分析了轴向及径向的温度梯度对燃烧器的影响,找到了在模拟条件下最佳的热力条件,并以此达到优化小尺寸燃烧器的目的。  相似文献   

13.
为深入分析不同壁面导热率对微尺度燃烧器稳燃性能的影响,使用基于OpenFOAM框架开发的低马赫数反应流求解器,并结合DRM-19化学反应机理对正交各向热异性的微型平行平板内甲烷/空气预混火焰稳定性开展了数值模拟。模拟结果表明:相比于各向热同性壁面材料,正交各向热异性材料能够显著提升壁面对通道上游附近未燃气体的预热作用,同时减少燃烧器向外界环境的热损失,可达到提高火焰吹出极限的效果。  相似文献   

14.
Targeted at improving the combustion stability and enhancing heat transfer in micro combustor, the combustion characteristics and thermal performance of micro combustor with pin fin arrays are numerically investigated by employing detail H2/O2 reaction mechanism. It is shown that the micro combustor with staggered pin fin arrays exhibits the highest average temperature and heat flux of external wall, while the micro combustor with in-line pin fin arrays displays the most uniform temperature distribution of external wall. When the equivalence ratio is 1.1, all micro combustors exhibit the highest mean temperature and heat flux of external wall. The micro combustor materials with high thermal conductivity can not only improve the average temperature and heat flux of external wall, but also enhance heat transfer to the upstream which can preheat the mixed gas. Therefore, the materials with high thermal conductivity, such as red copper and aluminum, can make up for the nonuniform temperature distribution of micro combustor with staggered pin fin arrays, so as to realize uniform high heat flux output of external wall.  相似文献   

15.
Thermal inertia of the surrounding hardware or elaborate flow arrangement is used for external recirculation of heat in many microcombustors, increasing the weight and pressure losses. Recent research promotes hydrogen as a promising fuel for microcombustion due to its high heat of combustion. On this background, a hydrogen-fuelled microcombustor of simple construction was designed, which utilized the external thermal recirculation by a hollow nitrogen-filled tube inserted in the flame. The present paper reports stabilization and structure of a well stabilized stoichiometric H2-air flame established in this microcombustor with the help of a detailed computational fluid dynamics model. Self-sustaining combustion could be achieved without any need for catalytic action. An asymmetric flame composed of two branches was stabilized on the walls at a location where the wall heat losses were balanced by the wall heat conduction. The flame thickness exceeded its characteristic one-dimensional value and flame zone broadened from the base to the tip due to heat losses and differential diffusion of hydrogen. Finally, the performance data for different inlet mass flow rates and wall thermal conductivities revealed useful operating points of the microcombustor for applications including micro-propulsion, heating and portable electric power generation.  相似文献   

16.
The effects of hydrogen addition, inlet temperature, wall thermal conductivity and wall thickness on the flame-wall coupling of the propane/air flames in a meso-scale tube are numerically investigated using a two dimensional model along with the detailed chemical mechanism. Higher wall thermal conductivity can result in preheating the fresh mixture uniformly in strongly flame-wall coupled system, which is vital to enhance the burning rate of fuel mixture. With the increase of wall thermal conductivity or hydrogen addition, the leading edge of the flame shifts from the wall to the axis, meanwhile the flame is more convex towards the unburned side near the leading edge. As the hydrogen addition and inlet temperature increase, the flame propagation speed increases significantly, while the maximum temperature and maximum total enthalpy decrease due to the reduced heat recirculation power. The flame propagation speed has a negative correlation with heat loss. The chemical reactions in preheat zone are enhanced at low wall thermal conductivity due to the higher inner wall temperature. Thinner combustor wall leads to higher flame speed and higher heat loss simultaneously. Results have implications on the choice of solid wall material and heat recirculation design in a stable meso-scale combustor for different fuels.  相似文献   

17.
Aimed at improving the energy output performance of the Microthermal Photovoltaic (MTPV) system, it is necessary to optimize the structure of the micro combustor. In this paper, micro combustor with in-line pin fins arrays (MCIPF) and micro combustor with both end-line pin fins arrays (MCEPF) were presented to realize the efficient combustion and heat transfer enhancement, and the influence of inlet velocity, equivalent ratio, and materials on thermal performance was investigated. The results showed that pin fins embedding is beneficial to improving combustion, and the combustion efficiency of MCIPF and MCEPF reaches 98.5% and 98.7%, which is significantly higher than that of the conventional cylindrical combustor (MCC). However, with the increase of inlet velocity from 8 m/s to 14 m/s, MCIPF exhibits the highest external wall temperature with a range of (1302–1386 K), while MCEPF maintains the best temperature uniformity. As the inlet velocity increases to 10 m/s, the external wall temperature and temperature uniformity reach the optimum. Besides, under the conditions of different equivalence ratios, both external wall temperature and heat flux increases first and then decreases, meanwhile the temperature uniformity of MCEPF is significantly improved compared with that of MCIPF, they all exhibit the highest external wall temperature with an equivalence ratio of 1.1, and the thermal performance is greatly enhanced. By comparing the heat transfer performance of combustors with different materials based on MCEPF, it is interesting to find that the application of high thermal conductivity materials can not only increase the external wall temperature, but also improve the temperature uniformity. Therefore, materials with high thermal conductivity such as Aluminum, Red Copper and Silicon Carbide should be selected for application in micro combustors and their components. The current work provides a new design method for the enhanced heat transfer of the micro combustor.  相似文献   

18.
Numerical investigation on the premixed H2/air combustion in a micro heat-recirculation combustor inserted with/without block is conducted. Effects of block setting, heat-recirculation, and flow rate on combustion characteristics and thermal performance are depicted and analyzed. The results demonstrate that the block enhances the flame stability and preheating effect, which also reduces the heat loss via exhaust gas, while it shortens reactants residence time. The combustor setting with a transverse block gains a better thermal performance than that inserted with a longitudinal block. With the increase of transverse block height, the high-temperature zone is broadened and radiation is improved. However, the block with a height of 10 mm separates the fluid field and weakens the effects of heat recirculation, leading to a lower outer wall temperature. Furthermore, the appropriate block insertion method and height contribute to the significant improvement of heat transfer, radiant efficiency and further optimization of micro power generator.  相似文献   

19.
对于甲烷和空气预混合气在矩形微燃烧室内的燃烧过程,采用加热片加热,对比分析了在外部加热时,有无隔板对燃烧稳定性的影响,并分析了不同加热温度下隔板式燃烧室内火焰传播特性。实验结果表示,随着加热温度的提升,隔板型燃烧室稳定燃烧区域不断增大;加热温度高于600K,隔板型燃烧室的火焰吹熄极限有明显改善;高温加热利于提高隔板型燃烧室在较大流量情况下燃烧的稳定性。相较于单通道燃烧室,外部加热对隔板型燃烧室燃烧稳定性的改善更加明显。  相似文献   

20.
Excess enthalpy combustion is a promising approach to stabilize flame in micro-combustors. Using a Swiss-roll combustor configuration, excess enthalpy combustion can be conveniently achieved. In this work, three types of Swiss-roll combustors with double spiral-shaped channels were designed and fabricated. The combustors were tested using methane/air mixtures of various equivalence ratios. Both temperature distributions and extinction limits were determined for each combustor configuration at different methane mass flow rates. Results indicate that the Swiss-roll combustors developed in the current study greatly enhance combustion stability in center regions of the combustors. At the same time, excess enthalpy combustors of the Swiss-roll configuration significantly extend the extinction limits of methane/air mixtures. In addition, the effects of combustor configurations and thermal insulation arrangements on temperature distributions and extinction limits were evaluated. With heat losses to the environment being significant, the use of thermal insulations further enhances the flame stability in center regions of the Swiss-roll combustors and extends flammable ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号