首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The magnetic orientation of single-walled carbon nanotubes (SWNTs) or the SWNT composites wrapped with polymer using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] (MEHPPV) as the conducting polymer were examined. The formation of SWNT/MEHPPV composites was confirmed by examining absorption and fluorescence spectra. The N,N-dimethylformamide solution of SWNT/MEHPPV composites or the aqueous solution of the shortened SWNTs was introduced dropwise onto a mica or glass plate. The magnetic processing of the composites or the SWNTs was carried out using a superconducting magnet with a horizontal direction (8 T). The AFM images indicated that the SWNT/MEHPPV composites or the SWNTs were oriented randomly without magnetic processing, while with magnetic processing (8 T), they were oriented with the tube axis of the composites or the SWNTs parallel to the magnetic field. In polarized absorption spectra of SWNT/MEHPPV composites on glass plates without magnetic processing, the absorbance due to semiconducting SWNT in the near-IR region in horizontal polarized light was almost the same as that in vertical polarized light. In contrast, with magnetic processing (8 T), the absorbance due to semiconducting SWNT in the horizontal polarization direction against the direction of magnetic field was stronger than that in the vertical polarization direction. Similar results were obtained from the polarized absorption spectra for the shortened SWNTs. These results of polarized absorption spectra also support the magnetic orientation of the SWNT/MEHPPV composites or the SWNTs. On the basis of a comparison of the composites and the SWNTs alone, the magnetic orientation of SWNT/MEHPPV composites is most likely ascribable to the anisotropy in susceptibilities of SWNTs.  相似文献   

2.
Polyethylene crystallization under shear has been studied in the presence of single-wall, few-wall, and multiwall carbon nanotubes (SWNT, FWNT, and MWNT). Polyethylene crystal d-spacings for (110) and (200) planes in polyethylene/carbon nanotubes (CNT) are smaller than in the control polyethylene without CNT and the polymer chain is oriented along the CNT axis. The single-wall carbon nanotube templated polyethylene crystals do not redissolve in boiling xylenes; instead, the chain morphology transforms to an amorphous conformation but remains oriented along the nanotube axis. SWNT crystal peaks were also observed in polyethylene/SWNT fibers.  相似文献   

3.
We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.  相似文献   

4.
The possibility of delivering DNA efficiently to cells represents a crucial issue for the treatment of both genetic and acquired diseases. However, even although the efficiency of non-viral transfection systems has improved in the last decade, none have yet proven to be sufficiently effective in vivo. We report herein our results on the functionalization of single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) by two cationic amphiphiles (lipid RPR120535 and pyrenyl polyamine), their use for the complexation of plasmid DNA, and their efficiency in transfecting cells in vitro. The experiments have shown that the efficiency of transfection is higher when using SWNT instead of MWNT, and that transfection efficiency is similar or slightly higher when using nanoplexes (SWNT/lipid RPR120535/DNA) instead of lipoplexes (lipid RPR120535/DNA) and several orders of magnitude higher than that of naked DNA. This study therefore shows both that the transfection is better when using SWNTs and that it is dependent on the nature of the amphiphilic molecules adsorbed on the nanotubes.   相似文献   

5.
Raman spectra of single-walled carbon nanotubes (SWNTs) in aqueous solutions with sodium dodecylsulfate (SDS) or fragmented single-stranded DNA (ss-DNA) and films obtained from these solutions have been studied. Scanning electron microscope (SEM) film study shows that micelles formed by SDS molecules around SWNT in solution do not keep individual nanotubes from sticking together in bundles during drying out the film. DNA wrapped around SWNT precludes the full nanotubes sticking in the film that facilitates the following splitting of these bundles.  相似文献   

6.
Carbon nanotubes including single wall and multi wall carbon nanotubes (SWNT and MWNT) are attractive nanomaterials with great promise in industrial and medical applications. However, little is known about the role of p21 and hus1 gene in the toxic response of SWNT and MWNT to mammalian cells. The aim of this study is to investigate the role of the p21 and hus1 genes in the toxicity of carbon nanotubes. Comparison of micronucleus fraction between the wild type and p21 -/- , hus1 +/+ mouse embryo fibroblast (MEF) cells was performed experimentally. Our results show that the yield of the micronucleus ratio in p21 gene knock-out MEF cells is lower than that in the wild type counterpart, indicating that p21 may play as anti-apoptosis factor during the signal transduction of DNA damage caused by carbon nanotubes in mammalian cells.  相似文献   

7.
We investigate the effect of functional groups of pyrene molecules on the electrical sensing performance of single-walled carbon nanotubes (SWNTs) based DNA biosensor, in which pyrenes with three different functional groups of carboxylic acid (Py-COOH), aldehyde (Py-CHO) and amine (Py-NH2) are used as linker molecules to immobilize DNA on the SWNT films. UV/Visible absorption spectra results show that all of the pyrene molecules are successfully immobilized on the SWNT surface via pi-pi stacking interaction. Based on fluorescence analysis, we show that the amide bonding of amine terminated DNA via pyrene containing carboxylic groups is the most efficient to immobilize DNA on the nanotube film. The electrical detection results show that the conductance of Py-COOH modified SWNT film is increased upon DNA immobilization, followed by further increase after hybridization of target DNAs. It indicates that the pyrene molecules with carboxylic acid groups play an important role to achieve highly efficient label-free detection by nondestructive and specific immobilization of DNAs.  相似文献   

8.
Sharma R  Lee CY  Choi JH  Chen K  Strano MS 《Nano letters》2007,7(9):2693-2700
Droplets of liquid drying on a surface with pinned contact area develop an internal hydrodynamic flow that carries entrained particles to the air-liquid-substrate interface. We use this phenomenon in cylindrical, micrometer-sized droplets of large aspect ratio (more than 1000:1) to align, position, and place individual anisotropic nanostructures such as single-walled carbon nanotubes (SWNT). More than 84% of SWNT are aligned in parallel within +/-5 degrees relative to the target axis of alignment. A potential flow model accurately describes and quantifies the statistical variation in the positioning of the nanostructures. We demonstrate for the first time the top-down parallel alignment and placement of individual (unbundled) nanotubes from solution electrically contacted across gold electrodes.  相似文献   

9.
Details of how atomic structure responds to strain are essential for building a deeper picture of mechanics in nanomaterials. Here, we provide the first experimental evidence of atomic displacements associated with shear strain in single-walled carbon nanotubes (SWNTs) by direct imaging using aberration-corrected transmission electron microscopy. The atomic structure of a zig-zag SWNT is resolved with unprecedented accuracy and the strain induced by bending is mapped in two dimensions. We show the existence of a dominant non-uniform shear strain that varies along the SWNT axis. The direction of shear is opposite to what would be expected from a simple force applied perpendicular to the axis to produce the bending. This highlights the complex atomistic strain behaviour of beam-bending mechanics in highly anisotropic SWNTs.  相似文献   

10.
We have prepared nylon 6,10 nanocomposites using functionalized single wall carbon nanotubes and our interfacial in situ polycondensation method. The specific functional groups -(CH2)nCOCl [n = 4 and 9] on the sidewalls of SWNT were designed to covalently link nanotubes to the nylon matrix via alkyl segments. The composites with functionalized SWNT show significant improvements in tensile modulus, strength, and toughness relative to nylon and nylon modified with non-functionalized SWNT. The alkyl linkages at the SWNT/nylon 6,10 interface contribute significantly to improving the toughness of the composites.  相似文献   

11.
Single-wall carbon nanotubes (SWNT) were incorporated into an organic polymer monolith containing vinylbenzyl chloride (VBC) and ethylene dimethacrylate (EDMA) to form a novel monolithic stationary phase for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The retention behavior of neutral compounds on this poly(VBC-EDMA-SWNT) monolith was examined by separating a mixture of small organic molecules using micro-HPLC. The result indicated that incorporation of SWNT enhanced chromatographic retention of small neutral molecules in reversed-phase HPLC presumably because of their strongly hydrophobic characteristics. The stationary phase was formed inside a fused-silica capillary whose lumen was coated with covalently bound polyethyleneimine (PEI). The annular electroosmotic flow (EOF) generated by the PEI coating allowed peptide separation by CEC in the counterdirectional mode. Comparison of peptide separations on poly(VBC-EDMA-SWNT) and on poly(VBC-EDMA) with annular EOF generation revealed that the incorporation of SWNT into the monolithic stationary phase improved peak efficiency and influenced chromatographic retention. The structures of pretreated SWNT and poly(VBC-EDMA-SWNT) monolith were examined by high-resolution transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, and multipoint BET nitrogen adsorption/desorption.  相似文献   

12.
Magnetic iron oxide nanoparticles and near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWNT) form heterostructured complexes that can be utilized as multimodal bioimaging agents. Fe catalyst-grown SWNT were individually dispersed in aqueous solution via encapsulation by oligonucleotides with the sequence d(GT)15, and enriched using a 0.5 T magnetic array. The resulting nanotube complexes show distinct NIR fluorescence, Raman scattering, and visible/NIR absorbance features, corresponding to the various nanotube species. AFM and cryo-TEM images show DNA-encapsulated complexes composed of a approximately 3 nm particle attached to a carbon nanotube on one end. X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) measurements reveal that the nanoparticles are primarily Fe2O3 and superparamagnetic. The Fe2O3 particle-enriched nanotube solution has a magnetic particle content of approximately 35 wt %, a magnetization saturation of approximately 56 emu/g, and a magnetic relaxation time scale ratio (T1/T2) of approximately 12. These complexes have a longer spin-spin relaxation time (T2 approximately 164 ms) than typical ferromagnetic particles due to the smaller size of their magnetic component while still retaining SWNT optical signatures. Macrophage cells that engulf the DNA-wrapped complexes were imaged using magnetic resonance imaging (MRI) and NIR mapping, demonstrating that these multifunctional nanostructures could potentially be useful in multimodal biomedical imaging.  相似文献   

13.
A unique nanoelectronic platform, based on single-walled carbon nanotubes (SWNTs), has been fabricated for measuring electrical transport in single-molecule DNA. We have tested 80 base pairs of single- and double-stranded DNA (ssDNA and dsDNA, respectively) of complex base sequences. About a 25-40 pA current (at 1 V) was measured for the dsDNA molecule covalently attached to the SWNT electrode at its termini. In the absence of base pair stacking, a ssDNA carries a feeble current of approximately 1 pA or less. Gate-voltage-dependent I-V characteristics revealed that the bridging dsDNA molecule acts as a p-type channel between SWNT source and drain electrodes.  相似文献   

14.
Ultrathin film preparations of single-walled carbon nanotube (SWNT) allow economical utilization of nanotube properties in electronics applications. Recent advances have enabled production of micrometer scale SWNT transistors and sensors but scaling these devices down to the nanoscale, and improving the coupling of SWNTs to other nanoscale components, may require techniques that can generate a greater degree of nanoscale geometric order than has thus far been achieved. Here, we introduce linker-induced surface assembly, a new technique that uses small structured DNA linkers to assemble solution dispersed nanotubes into parallel arrays on charged surfaces. Parts of our linkers act as spacers to precisely control the internanotube separation distance down to <3 nm and can serve as scaffolds to position components such as proteins between adjacent parallel nanotubes. The resulting arrays can then be stamped onto other substrates. Our results demonstrate a new paradigm for the self-assembly of anisotropic colloidal nanomaterials into ordered structures and provide a potentially simple, low cost, and scalable route for preparation of exquisitely structured parallel SWNT films with applications in high-performance nanoscale switches, sensors, and meta-materials.  相似文献   

15.
Hybrids of carbon single-walled nanotubes (SWNT) with fragmented single or double-stranded DNA (fss- or fds-DNA) or polyC were studied by Atom Force Microscopy (AFM) and computer modeling. It was found that fragments of the polymer wrap in several layers around the nanotube, forming a strand-like spindle. In contrast to the fss-DNA, the fds-DNA also forms compact structures near the tube surface due to the formation of self-assembly structures consisting of a few DNA fragments. The hybrids of SWNT with wrapped single-, double- or triple strands of the biopolymer were simulated, and it was shown that such structures are stable. To explain the reason of multi-layer polymeric coating of the nanotube surface, the energy of the intermolecular interactions between different components of polyC was calculated at the MP2/6-31++G** level as well as the interaction energy in the SWNT-cytosine complex.  相似文献   

16.
The interaction of organometallic chromium-centered free radicals generated by the homolytic dissociation of (pentamethylcyclopentadienyl)chromiumtricarbonyl dimer in toluene with single-walled carbon nanotubes (SWNT) was investigated using ESR spectroscopy. Low values of g-factors of the radical species formed from chromium-centered free radicals and SWNT as well as invariability of disorder mode (D band) intensity in Raman spectra of pristine and functionalized SWNT after this reaction indicated that chromium-centered free radicals added to the surface of nanotubes through rather oxygen atoms than to sidewall carbon atoms. This is the first chromium-derivatization of carbon nanotubes.  相似文献   

17.
New polyaniline/nanotube (PANI/NT) composites have been synthesized by “in situ” polymerization processes using both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs) in concentrations ranging from 2 to 50 wt.%. Although no structural changes are observed using MWNTs above a concentration of 20 wt.%, the in situ synthesis results in electronic interactions between nanotubes and the quinoid ring of PANI leading to enhanced electronic properties and thus to the formation of a genuine PANI/MWNT composite material. On the other hand, using SWNTs favors the formation of inhomogeneous mixtures rather than of a homogeneous composite materials, independent of the SWNT concentration. X-ray diffraction, Raman and transport measurements show the different behavior of both classes of nanotubes in PANI/NT materials. The difficulties in the formation of a true PANI/SWNT composite are related to the far more complex structure of the SWNT material itself, i.e. to the presence of entangled bundles of SWNTs, amorphous carbon and even catalytic metal particles.  相似文献   

18.
Excessive sample volumes continue to be a major limitation in the analysis of protein-protein interactions, motivating the search for label-free detection methods of greater sensitivity. Herein, we report the first chemical approach for selective protein recognition using fluorescent single-walled carbon nanotubes (SWNTs) enabling label-free microarrays capable of single protein detection. Hexahistidine-tagged capture proteins directly expressed by cell-free synthesis on SWNT/chitosan microarray are bound to a Ni(2+) chelated by Nα,Nα-bis(carboxymethyl)-L-lysine grafted to chitosan surrounding the SWNT. The Ni(2+) acts as a proximity quencher with the Ni(2+)/SWNT distance altered upon docking of analyte proteins. This ability to discern single protein binding events decreases the apparent detection limit from 100 nM, for the ensemble average, to 10 pM for an observation time of 600 s. This first use of cell-free synthesis to functionalize a nanosensor extends this method to a virtually infinite number of capture proteins. To demonstrate this, the SWNT microarrays are used to analyze a network of 1156 protein-protein interactions in the staurosporine-induced apoptosis of SH-SY5Y cells, confirming literature predictions.  相似文献   

19.
The mechanical failure of hybrid materials made from polymers and single-wall carbon nanotubes (SWNT) is primarily attributed to poor matrix-SWNT connectivity and severe phase segregation. Both problems can be successfully mitigated when the SWNT composite is made following the protocol of layer-by-layer assembly. This deposition technique prevents phase segregation of the polymer/SWNT binary system, and after subsequent crosslinking, the nanometre-scale uniform composite with SWNT loading as high as 50 wt% can be obtained. The free-standing SWNT/polyelectrolyte membranes delaminated from the substrate were found to be exceptionally strong with a tensile strength approaching that of hard ceramics. Because of the lightweight nature of SWNT composites, the prepared free-standing membranes can serve as components for a variety of long-lifetime devices.  相似文献   

20.
Stable, homogeneous, aqueous dispersions of single-walled carbon nanotubes (SWNTs) are prepared by nonspecific physical adsorption of surfactants enhanced by sonication. Upon centrifugation, supernatant and precipitate phases are obtained. The initial weights of the SWNTs and the surfactant are divided between these two phases, and the respective SWNT concentration in each phase is unknown. The focus of this work is on the determination of the true concentration of raw, exfoliated HiPCO SWNTs in the supernatant phase. A UV-visible absorption-based approach is suggested for a direct measurement of the SWNT and the surfactant concentration in the supernatant. UV-visible absorbance spectra of SWNTs-surfactant dispersions and surfactants alone reveal that the intensity of a certain peak, attributed to the pi-plasmon resonance absorption, is unaffected by the presence of most surfactants. A calibration plot is then made by monitoring the intensity of the peak as a function of the true concentration of the exfoliated SWNTs. Thus, we are able to determine the unknown concentration of surfactant-dispersed HiPCO SWNTs in the supernatant solution, simply by measuring its optical absorbance. Moreover, we can now calculate the surfactant efficiency in dispersing SWNTs. Cryogenic-transmission electron microscopy and thermogravimetric analysis techniques are used for the characterization of these dispersions and to complement the UV-visible measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号