首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Immunization with irradiated sporozoites protects animals and humans against malaria, and the circumsporozoite protein is a target of this protective immunity. We now report that adjuvant-free intramuscular injection of mice with plasmid DNA encoding the Plasmodium yoelii circumsporozoite protein induced higher levels of antibodies and cytotoxic T lymphocytes against the P. yoelii circumsporozoite protein than did immunization with irradiated sporozoites. Mice immunized with this vaccine had an 86% reduction in liver-stage parasite burden after challenge with 5 x 10(5) sporozoites (> 10(5) median infectious doses). Eighteen (68%) of 28 mice that received two or three doses of vaccine were protected against challenge with 10(2) sporozoites, and the protection was dependent on CD8+ T cells. These studies demonstrate the utility of plasmid DNA immunization against a nonviral infection. By obviating the requirement for peptide synthesis, expression and purification of recombinant proteins, and adjuvants, this method of immunization provides an important alternative for rapid identification of protective B- and T-cell epitopes and for construction of vaccines to prevent malaria and other infectious diseases.  相似文献   

2.
To enhance the efficacy of DNA malaria vaccines, we evaluated the effect on protection of immunizing with various combinations of DNA, recombinant vaccinia virus, and a synthetic peptide. Immunization of BALB/c mice with a plasmid expressing Plasmodium yoelii (Py) circumsporozoite protein (CSP) induces H-2Kd-restricted CD8+ cytotoxic T lymphocyte (CTL) responses and CD8+ T cell- and interferon (IFN)-gamma-dependent protection of mice against challenge with Py sporozoites. Immunization with a multiple antigenic peptide, including the only reported H-2Kd-restricted CD8+ T cell epitope on the PyCSP (PyCSP CTL multiple antigenic peptide) and immunization with recombinant vaccinia expressing the PyCSP induced CTL but only modest to minimal protection. Mice were immunized with PyCSP DNA, PyCSP CTL multiple antigenic peptide, or recombinant vaccinia expressing PyCSP, were boosted 9 wk later with the same immunogen or one of the others, and were challenged. Only mice immunized with DNA and boosted with vaccinia PyCSP (D-V) (11/16: 69%) or DNA (D-D) (7/16: 44%) had greater protection (P < 0. 0007) than controls. D-V mice had significantly higher individual levels of antibodies and class I-restricted CTL activity than did D-D mice; IFN-gamma production by ELIspot also was higher in D-V than in D-D mice. In a second experiment, three different groups of D-V mice each had higher levels of protection than did D-D mice, and IFN-gamma production was significantly greater in D-V than in D-D mice. The observation that priming with PyCSP DNA and boosting with vaccinia-PyCSP is more immunogenic and protective than immunizing with PyCSP DNA alone supports consideration of a similar sequential immunization approach in humans.  相似文献   

3.
Using the murine parasite Plasmodium yoelii (Py) as a model for malaria vaccine development, we have previously shown that a DNA plasmid encoding the Py circumsporozoite protein (PyCSP) can protect mice against sporozoite infection. We now report that mixing a new plasmid PyCSP1012 with a plasmid encoding murine granulocyte-macrophage colony-stimulating factor (GM-CSF) increases protection against malaria, and we have characterized in detail the increased immune responses due to GM-CSF. PyCSP1012 plasmid alone protected 28% of mice, and protection increased to 58% when GM-CSF was added (p < 0.0001). GM-CSF plasmid alone did not protect, and control plasmid expressing inactive GM-CSF did not enhance protection. GM-CSF plasmid increased Abs to PyCSP of IgG1, IgG2a, and IgG2b isotypes, but not IgG3 or IgM. IFN-gamma responses of CD8+ T cells to the PyCSP 280-288 amino acid epitope increased but CTL activity did not change. The most dramatic changes after adding GM-CSF plasmid were increases in Ag-specific IL-2 production and CD4+ T cell proliferation. We hypothesize that GM-CSF may act on dendritic cells to enhance presentation of the PyCSP Ag, with enhanced IL-2 production and CD4+ T cell activation driving the increases in Abs and CD8+ T cell function. Recombinant GM-CSF is already used in humans for medical purposes, and GM-CSF protein or plasmids may be useful as enhancers of DNA vaccines.  相似文献   

4.
Data generated in the Plasmodium yoelii rodent model indicated that plasmid DNA vaccines encoding the P.yoelii circumsporozoite protein (PyCSP) or 17 kDa hepatocyte erythrocyte protein (PyHEP17) were potent inducers of protective CD8+ T cell responses directed against infected hepatocytes. Immunization with a mixture of these plasmids circumvented the genetic restriction of protective immunity and induced additive protection. A third DNA vaccine encoding the P. yoelii sporozoite surface protein 2 (PySSP2) also induced protection. The P. falciparum genes encoding the homologues of these three protective P. yoelii antigens as well as another P. falciparum gene encoding a protein that is expressed in infected hepatocytes have been chosen for the development of a human vaccine. The optimal plasmid constructs for human use will be selected on the basis of immunogenicity data generated in mice and nonhuman primates. We anticipate that optimization of multi-gene P. falciparum DNA vaccines designed to protect against malaria by inducing CD8+ T cells that target infected hepatocytes will require extensive clinical trials during the coming years.  相似文献   

5.
We previously reported the identification of a T cell epitope in the N-terminal part of the circumsporozoite protein (CSP) of Plasmodium yoelii yoelii (Pyy). CD4+ T cell clones derived from mice immunized with a 21-mer peptide (amino acids 59-79, referred to as Py1) containing this epitope confer complete protection after passive transfer in mice. These clones proliferate in vitro in the presence of a 13-mer peptide (amino acids 59-71, referred to as Py1T). This shorter peptide was found to behave as a Th epitope in vivo, allowing overcoming of the genetic restriction for production of anti-repeat antibodies in BALB/c mice, when cross-linked to three (QGPGAP) repeats of the Pyy CSP. In this study, we report protection in BALB/c mice, against a challenge with Pyy sporozoites after immunization with linear and multiple antigen peptides containing Py1T as T epitope and three repeats QGPGAP (Py3) as B epitope. Multiple antigen peptide (MAP4-Py1T-Py3)-induced immunity was shown to be more effective than immunity induced by the linear form of the conjugate (Py1T-Py3), protecting against challenges with higher numbers of sporozoites. In both cases, levels of anti-repeat antibodies were strongly correlated with anti-parasite antibodies and protection. When tested in vitro, sera from mice immunized with the protective constructs strongly inhibited Pyy liver stages, while lymph node T cells displayed no cytotoxicity. In vivo, depletion of CD4+ or CD8+ T cells did not affect protection. Furthermore, MAP4-Py1T-Py3-immunized mice were not protected against a challenge with P. yoelii nigeriensis sporozoites, a parasite which has the same Py1T sequence but differs from Pyy in its repeated sequence. These results demonstrate that anti-repeat antibodies raised by immunization with the linear or the MAP form are exclusively responsible for the protection. Furthermore, this antibody response is boosted by a sporozoite challenge, allowing protection against a second challenge.  相似文献   

6.
Immunization of mice with DNA vaccines encoding the full-length form and C and N termini of Plasmodium yoelii merozoite surface protein 1 provided partial protection against sporozoite challenge and resulted in boosting of antibody titers after challenge. In C57BL/6 mice, two DNA vaccines provided protection comparable to that of recombinant protein consisting of the C terminus in Freund's adjuvant.  相似文献   

7.
A leading candidate for a vaccine targeted at the erythrocytic stages of plasmodial parasite development is the merozoite surface protein-1 (MSP-1). We have previously shown that the carboxyl-terminal region of MSP-1 derived from Plasmodium yoelii yoelii 17XL, expressed as a fusion protein with glutathione S-transferase (GST-PYC2), can immunize mice against an otherwise lethal homologous challenge infection. This protection has been shown to be predominantly mediated by antibodies. We report here on the efficacy of immunization with MSP-1 carboxyl regions when the challenge is a heterologous rodent parasite species. The course of parasitemia was not altered in mice immunized with GST-PYC2 and challenged with 10(4) heterologous Plasmodium chabaudi adami parasites, as both control and immunized mice developed infections that peaked at day 7 and then rapidly declined. Similarly, mice immunized with GST-PYC2 and challenged with 10(5) Plasmodium berghei ANKA parasites displayed virulence similar to that seen in infection control mice. The homologous region of the P. chabaudi adami MSP-1 gene was similarly expressed as a fusion protein with GST. Mice immunized with GST-PCC2 and challenged with 10(4) parasites showed significant protection against homologous P. chabaudi adami infection but no protection whatsoever against heterologous P. yoelii yoelii 17XL infection. These in vivo results correlate with the observation that sera generated by immunization with the carboxyl region of MSP-1 recognizes this protein from homologous, but not heterologous, radiolabeled parasite protein preparations.  相似文献   

8.
A Plasmodium falciparum circumsporozoite protein (PfCSP) recombinant fusion protein, R32NS1(81), formulated with monophosphoryl lipid A, cell wall skeleton of mycobacteria, and squalane (Detox) was administered to 12 volunteers. One volunteer had malaise and self-limited painful induration at the injection site after the second dose and declined further immunization. The other 11 volunteers tolerated the three doses of 1,230 micrograms of vaccine, but most complained of sore arms; in five cases the pain or malaise was severe enough to interfere with work or sleep. Two weeks after the third dose of vaccine, four of the 11 immunized volunteers had > or = 14 micrograms/ml of antibodies to the repeat region of the PfCSP in their serum. Two of these four volunteers did not develop P. falciparum parasitemia when challenged by the bite of five mosquitoes carrying P. falciparum sporozoites. The seven volunteers with lower levels of antibodies and 11 of 11 controls developed parasitemia. These data are consistent with other studies, and indicate that vaccine-induced antibodies against the repeat region of PfCSP can prevent effective sporozoite infection of hepatocytes in humans. The challenge is to improve the immunogenicity of PfCSP-based vaccines, and to develop methods for including PfCSP peptides as components of multitarget malaria vaccines.  相似文献   

9.
The hepatitis B virus nucleocapsid antigen (HBcAg) was investigated as a carrier moiety for circumsporozoite protein (CS) repeat B cell epitopes of the rodent malaria agent Plasmodium yoelii. A vector expressing a hybrid gene coding for the dominant CS repeat epitope (QGPGAP)4 was constructed and transformed into avirulent Salmonella typhimurium. The resulting hybrid HBcAg-CS polyproteins were purified from recombinant Salmonella typhimurium. They purified as particles and displayed HBc as well as P. yoelii CS antigenicity. To investigate immunogenicity and protective efficacy, BALB/c mice were immunized with the hybrid HBcAg-CS particles. Immunization resulted in high titered antinative CS serum IgG antibody litres. BALB/c mice immunized with hybrid HBcAgCS particles were between 90-100% protected against subsequent P. yoelli challenge. Protective immunity persisted for a minimum of three months. These data confirm the previous suggestion (Sch?del et al., 1994), that hybrid HBcAg particles could become a useful component of future human malaria vaccines.  相似文献   

10.
A Jennerian approach using live animal viruses to immunize humans is the current lead strategy for developing rotavirus vaccines. This strategy has been modified by incorporating human rotavirus VP7 genes into vaccine strains to induce serotype-specific neutralizing antibodies to human strains. However, the role of homotypic versus heterotypic immunity in protection is unclear. To investigate the importance of serotype-specific immunity in a mouse model, mice were immunized with rhesus rotavirus (RRV: G3, P5[3]), RRV-based modified Jennerian vaccine strains DxRRV (G1, P5[3]), DS1xRRV (G2, P5[3]), or ST3xRRV (G4, P5[3]), or bovine rotavirus NCDV (G6, P6[1]) and challenged with murine rotavirus ECw (G3, P[16]). Mice immunized with modified Jennerian vaccines exhibited complete to near-complete protection from challenge. NCDV-immunized mice also showed partial protection. The protection was correlated with fecal IgA levels to VP6, not serum IgG responses. Modified Jennerian vaccines induce both heterotypic and homotypic immunity in mice.  相似文献   

11.
Live-attenuated retroviruses have been shown to be effective retroviral vaccines, but currently little is known regarding the mechanisms of protection. In the present studies, we used Friend virus as a model to analyze characteristics of a live-attenuated vaccine in protection against virus-induced disease. Highly susceptible mice were immunized with nonpathogenic Friend murine leukemia helper virus (F-MuLV), which replicates poorly in adult mice. Further attenuation of the vaccine virus was achieved by crossing the Fv-1 genetic resistance barrier. The minimum dose of vaccine virus required to protect 100% of the mice against challenge with pathogenic Friend virus complex was determined to be 10(3) focus-forming units of attenuated virus. Live vaccine virus was necessary for induction of immunity, since inactivated F-MuLV did not induce protection. To determine whether immune cells mediated protection, spleen cells from vaccinated donor mice were adoptively transferred into syngeneic recipients. The results indicated that immune mechanisms rather than viral interference mediated protection.  相似文献   

12.
To investigate the importance of major histocompatability complex (MHC) class I- and MHC class II-dependent immune responses in herpes simplex virus-1 (HSV-1) vaccine efficacy, groups of beta 2% (MHC I-) and Ab% (MHC II-) mice were inoculated with various vaccines, and then challenged intraperitoneally with HSV-1. Following vaccination with either live avirulent HSV-1, expressed HSV-1 glycoprotein D (gD), or a mixture of seven expressed HSV-1 glycoproteins (7gPs), Ab% (MHC-II-) mice developed no enzyme-linked immunosorbent assay (ELISA) or neutralizing antibody titres. In contrast, significant ELISA and neutralizing antibody titres were induced in beta 2m% (MHC-I-) mice by all three vaccines. The neutralizing antibody titres were similar for all three vaccines, but were only approximately 1/4 to 1/3 of that developed in C57BL/6 (parental) mice vaccinated with the same antigens. All three vaccines protected 100% of the wild-type C57BL/6 mice against lethal challenge with 2 x 10(7) plaque-forming units (PFU) of HSV-1. The live virus vaccine and the 7gPs vaccine also protected 80% of the beta 2m% mice against the same lethal HSV-1 challenge dose. In contrast, in Abo/o mice, none of the vaccines provided significant protection against the same lethal challenge dose of HSV-1. However, at a lower challenge dose of 2 x 10(6) PFU, all three vaccines protected 70-80% of the vaccinated Ab% mice (compared to only 10% survival in mock vaccinated controls). Thus, vaccination provided some protection against lethal HSV-1 challenge in both beta 2m% and Ab% mice; however, the protection was less than that seen in the parental C57BL/6 mice. In addition, Ab% mice were less well protected by vaccination than were beta 2m% mice. Our results suggest that (1) both MHC-I and MHC-II are involved in vaccine efficacy against HSV-1 challenge; (2) both types of responses must be present for maximum vaccine efficacy: and (3) the MHC-II-dependent immune response appeared to be more important than the MHC-I-dependent immune response for vaccine efficacy against HSV-I challenge.  相似文献   

13.
Only low antibody levels were obtained from vaccinating human volunteers with single-chain peptide from the Plasmodium falciparum circumsporozoite protein (PfCSP). This resulted in modest protection against sporozoite challenge. In addition, HLA restriction limits the probability of synthesis of a vaccine effective for a diverse population. We report immunization studies with a multiple antigen peptide (MAP) system consisting of multiple copies of a B-cell epitope from the central repeat region of the PfCSP in combination with a universal T-cell epitope, the P2P30 portion of tetanus toxin. This MAP4(NANP)6P2P30 vaccine was highly immunogenic in four different strains of mice when used with various safe and nontoxic adjuvants. When this MAP vaccine was encapsulated in liposomes with lipid A and adsorbed to aluminium hydroxide and given three times at 4-week intervals, the resultant antibody prevented 100% of sporozoites from invading and developing into liver stage infection. This high degree of immunogenicity of MAP4(NANP)6P2P30 vaccine formulated in liposomes, lipid A and aluminum hydroxide provides the foundation for consideration of human trials with this formulation.  相似文献   

14.
A DNA vaccine encoding the immunogenic and biologically active portion of anthrax protective antigen (PA) was constructed. Spleen cells from BALB/c mice immunized intramuscularly with this vaccine were stimulated to secrete IFN gamma and IL-4 when exposed to PA in vitro. Immunized mice also mounted a humoral immune response dominated by IgG1 anti-PA antibody production, the subclass previously shown to confer protection against anthrax toxin. A 1:100 dilution of serum from these animals protected cells in vitro against cytotoxic concentrations of PA. Moreover, 7/8 mice immunized three times with the PA DNA vaccine were protected against lethal challenge with a combination of anthrax protective antigen plus lethal factor.  相似文献   

15.
The current potency test for pertussis vaccines, the mouse protection test (MPT), has many disadvantages. However, no alternative is yet available. The purpose of this study is to develop a serological alternative for the MPT based on in vitro assessment of the humoral immune response against pertussis in mice. After immunization with pertussis whole cell vaccine, the MPT shows a normal primary and secondary antibody response. Moreover, the i.c. challenge has a distinct booster effect on the pertussis IgG response. The relationship between the concentration of IgG antibodies against the surface-antigens of pertussis bacteria and the survival of mice after the i.c. challenge was demonstrated in a modified MPT (R = 0.91). To this end a protecting antibody level of > or = 45 EU/ml was selected as a level at which concentration most of the mice survived. Survival of mice in the MPT could be predicted, based on the antibody concentration at the day of challenge. Potencies estimated with the predicted and actual survival corresponded well (P = 0.990). This confirmed the essential role of vaccine induced pertussis antibodies in the protection against a lethal i.c. challenge and offered a possibility to develop a pertussis potency test based on serology. We developed a model in which mice (20-24 g) are immunized (i.p.) with graded doses of vaccine and bled after four weeks. Sera are titrated in Bordetella pertussis whole cell ELISA and potency based on vaccine dose dependent antibody response is estimated by means of a parallel line analysis. The potency of vaccines tested in the Pertussis Serological Potency Test (PSPT) and MPT are significantly similar, a P-value of 0.92 was found by means of the chi 2 test. Compared to the MPT, the PSPT is more reproducible as is indicated by its smaller 95% confidence intervals. Moreover, by using the PSPT the animal distress can be reduced to an acceptable level and the PSPT also results in a reduction of more than 25% in use of mice.  相似文献   

16.
The immunogenicity of a tissue culture-derived vaccine generated from an Eimeria tenella-infected cell line in a serologically defined bird line, and the ability to confer protection against homologous challenge in young chicks was examined. The cell line, SB-CEV-1/F7, was infected with E. tenella sporozoites and the resulting 72-h postinfection cell-free supernatants were adjuvanted and used to immunize Leghorn chicks homozygous for the B19 haplotype. Peripheral blood and splenic lymphocytes from these immunized birds proliferated in vitro in response to both sporozoite and SB-CEV-1/F7 tissue culture-derived parasite antigens. In addition, splenic immune lymphocytes obtained from birds previously exposed to E. tenella in vivo responded to these tissue culture-derived parasite antigens in vitro. To evaluate the efficacy of the vaccine, B19B19 chicks were vaccinated s.c. with adjuvanted 72-h postinfection cell-free supernatants or an ammonium sulfate precipitate derivative thereof, orally boosted, and then subjected to homologous parasite challenge at 10 d of age. The level of protection (body weight gain, cecal lesions) was assessed 6 d after challenge. Performance results from four battery trials demonstrated that vaccinated birds were significantly protected against weight loss compared to unimmunized, challenged controls. In addition, in two of the four trials, vaccinated birds were significantly protected against lesions. These results provide strong evidence that tissue culture-derived parasite antigens obtained from the E. tenella-infected SB-CEV-1/F7 cell line are immunogenic in birds and can provide partial protection against E. tenella clinical coccidiosis.  相似文献   

17.
Helper T lymphocyte (HTL) responses play an important role in the induction of both humoral and cellular immune responses. Therefore, HTL epitopes are likely to be a crucial component of prophylactic and immunotherapeutic vaccines. For this reason, Pan DR helper T cell epitopes (PADRE), engineered to bind most common HLA-DR molecules with high affinity and act as powerful immunogens, were developed. Short linear peptide constructs comprising PADRE and Plasmodium-derived B cell epitopes induced antibody responses comparable to more complex multiple antigen peptides (MAP) constructs in mice. These antibody responses were composed mostly of the IgG subclass, reactive against intact sporozoites, inhibitory of schizont formation in liver invasion assays, and protective against sporozoite challenge in vivo. The PADRE HTL epitope has also been shown to augment the potency of vaccines designed to stimulate a cellular immune response. Using a HBV transgenic murine model, it was found that CTL tolerance was broken by PADRE-CTL epitope lipopeptide, but not by a similar construct containing a conventional HTL epitope. There are a number of prophylactic vaccines that are of limited efficacy, require multiple boosts, and/or confer protection to only a fraction of the immunized population. Also, in the case of virally infected or cancerous cells, new immunotherapeutic vaccines that induce strong cellular immune responses are desirable. Therefore, optimization of HTL function by use of synthetic epitopes such as PADRE or pathogen-derived, broadly crossreactive epitopes holds promise for a new generation of highly efficacious vaccines.  相似文献   

18.
Staphylococcal and streptococcal superantigens are exotoxins that may be linked to many human pathologies involving impaired immune functions. Despite considerable sequence divergence, bacterial superantigens share extensive secondary and tertiary structure and use similar structural strategies to bind major histocompatibility complex class II receptors. We produced by site-directed mutagenesis of the conserved receptor-binding surfaces of the superantigens staphylococcal enterotoxins A and B. These vaccines protected immunized mice and rhesus monkeys from lethal toxic shock. In addition, antibodies produced against each superantigen recognized and neutralized distantly related superantigens. This antibody cross-reactivity was additive in that mixtures of superantigens used in immunization were more effective than single-component vaccines in protecting mice from challenges with individual or mixed superantigens. We conclude that an optimal combination of these genetically attenuated superantigen vaccines may protect against all structurally related superantigens.  相似文献   

19.
By adoptive transfer of sera or immunoglobulin preparations, vaccine-induced protection against TBEV has been demonstrated to be mediated by antibodies to the surface protein of TBEV, glycoprotein E. Nevertheless, the mechanism of vaccine-induced protection against TBEV remains unclear. Protection by E antibodies without in vitro neutralization was shown by one group, whereas others found a correlation between protection in vivo and neutralization in vitro. Here, the authors confirm in a mouse model of tick-borne encephalitis (TBE) that immunization with the whole-killed virus vaccine protects mice against a subsequent challenge with a highly lethal dose of virus, i.e. 250 LD50 doses. Vaccine-induced immunity, however, is not completely neutralizing as demonstrated by the development of immune responses to a non-structural virus protein absent from the vaccine, yet expressed in the course of virus replication. Antibodies specific for the non-structural protein 1 (NS1) and cytotoxic T-cells could be detected after, but not prior to, virus challenge of vaccinated animals, establishing that protection by this highly effective vaccine is not equivalent with complete neutralization of the challenge virus.  相似文献   

20.
A recently described DNA vaccine for dengue (DEN) type 2 was shown to elicit high levels of neutralizing antibodies in mice. The vaccine candidate consists of the PreM and 92% of the envelope genes of DEN 2 New Guinea C strain. We further evaluated this DNA vaccine candidate by examining the effect of immuno-stimulatory CpG DNA motifs on antibody response and by studying the protective efficacy of the vaccine. The results showed that CpG motifs present in pUC 19 significantly improved the antibody response to a suboptimal dose of 3.1 micrograms of the DEN DNA vaccine. In a lethal mouse intracerebral challenge model, the vaccine provided a significant level of protection. Sixty percent of the mice immunized with the DEN DNA vaccine plus pUC 19 survived the challenge compared to only 10% in the control group that received vector plus pUC. These studies illustrate that nucleic acid immunization is a viable approach to developing a DEN vaccine and that immuno-stimulatory CpG DNA motifs can be used to lower the minimum dose required to produce an antibody response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号