首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A native mesophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, has been isolated (30 ℃) from a typical, lead-zinc concentrate of Dachang Mine in the region of Liuzhou located in the southwest of China. Two typical copper sulfide minerals, chalcopyrite and bornite, were from Meizhou Copper Mine in the region of Guangdong Province, China. Variation of pH and cell growth on time and effects of some factors such as temperature, inoculation cell number, and pulp density on the bioleaching of chalcopyrite and bornite were investigated. The results obtained from the bioleaching experiments indicate that the efficiency of copper extraction depends on all of the mentioned variables, especially the pulp density has more effect than the other factors on the microorganism. In addition, the results show that the maximum copper recovery was achieved using a mesophilic culture. The copper dissolution reached 51.34% for the chalcopyrite while it was 72.35% for the bornite at pH 2.0, initial Fe( Ⅱ ) concentration 9 g/L and pulp density 5%, after 30 d.  相似文献   

2.
The mechanism of attachment and leaching of thiobacillus ferrooxidans (T. f. ) on chalcopyrite were studied. The shaking flasks with bacteria were observed by SEM. The process of T. f attached to the surface of the mineral sample and the biofilm forming were described. The promoting role of the biofilm for bioleaching was discussed. The existence of Fe^2 in the exopolysaccharide layer of T. f was demonstrated by EM(electronic microscope)cell-chemistry analysis. These results show that under the proper growth condition of bacteria, bioleaching of chalcopyrite results in the formation of complete biofilm after 2 - 3 weeks. There are iron ions in the outer layer polymer of T. f. , which provides the micro-environment for themselves, and can guaruntee the energy needed for the bacteria growth in the blofilm. At the same time, Fe^3 ions produced oxidize sulfide which brings about the increase of both growth rate of the bacterial and leaching rate of sulfide minerals.  相似文献   

3.
绢云母对黄铜矿微生物浸出的影响   总被引:3,自引:0,他引:3  
采用以Acidithiobacillus ferrooxidans为主的混合菌,研究绢云母对微生物浸出黄铜矿的影响。结果表明,铜的浸出率随着绢云母粒度的减小而增加,随着绢云母质量分数的增加而呈先升高后降低的趋势。在添加粒度为-33μm、质量分数为5.0%的绢云母时,铜的最高浸出率为54.88%,比不添加绢云母时的铜浸出率提高了约12%,表明绢云母能促进黄铜矿的微生物浸出。绢云母的加入可使浸出体系pH值降低,最终pH值低于1.22。在浸出过程中,新生成的物质主要是铵黄铁矾,它覆盖于黄铜矿的表面,对微生物浸出铜有一定的阻碍作用。  相似文献   

4.
Bioleaching of chalcopyrite often encountered the formation of passivation layer, which inhibited the leaching process and resulted in a low leaching rate. This inhibitory effect can be eliminated by thermophilic biole- aching. The industrial test of BioCOP technology based on thermophiles was successfully completed, which confirmed the feasibility of chalcopyrite bioleaching. However, industrial leaching rate of chalcopyrite heap bioleaching is lower. This paper described the development status and industrial test of chalcopyrite heap bioleaching technology. The reasons for the lower efficiency of chalcopyrite heap bioleaching were analyzed. The strategies for successful chalcopyrite heap bioleaching were proposed.  相似文献   

5.
在细菌浸出黄铜矿的过程中,黄铜矿表面钝化是普遍现象,成为生物浸铜技术的瓶颈问题。对比研究了普通浸出与强化浸出(加入玻璃圆珠)对铜浸出的影响。结果表明,玻璃圆珠的加入改善了浸出条件,削弱了黄铜矿的钝化效应,使黄铜矿的Cu浸出率从50%提升至 89.8%。扫描电镜(SEM)和X射线衍射(XRD)分析发现,添加玻璃圆珠的黄铜矿表面没有黄钾铁矾沉淀,钝化作用不明显;而不加玻璃圆珠的黄铜矿表面附着厚厚的结构致密的黄钾铁矾,钝化严重,从而阻碍了黄铜矿的溶解和浸出。  相似文献   

6.
A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a low-grade chalcopyrite ore. The TA grow at temperatures ranging from 40 to 80℃, with 65℃ being the optimum temperature, and at pH values of l.5 to 4.0, with an optimum pH value of 2.0. The bioleaching experiments of the chalcvpyrite ore were conducted in both laboratory batch bioreactors and leaching columns. The results obtained from the bioreactor experiments showed that the TA bioleaching rate of copper reached 97% for a 12-day leaching period, while the bioleaching rate was 32.43% for thiobacillus ferrooxidans (Tf) leaching for the same leaching time. In the case of column leaching, tests of a two-phase leaching (196 days), that is, a two-month (56 days) Tf leaching in the first phase, followed by a 140-day TA leaching in the second phase were performed. The average leaching rate of copper achieved for the 140-day TA leaching was 195mg/(L.d), while for the control experiments, it was as low as 78mg/(L .d) for the Tf leaching, indicating that the TA possesses a more powerful oxidizing ability to the chalcopyrite than Tf Therefore, it is suggested that the two-phase leaching process be applied to .for the heap leaching operations, whereas, the TA can be used in the second phase when the temperature inside the heap has increased, and the primary copper sulfide minerals have already been partially oxidized with Tf beforehand in the first phase.  相似文献   

7.
聚乙二醇对氧化亚铁硫杆菌浸出黄铜矿的影响   总被引:1,自引:0,他引:1  
为提高黄铜矿生物浸出率,研究聚乙二醇(PEG)对Acidithiobacillus ferrooxidans strain XZ11 Fe2+氧化活性和黄铜矿生物浸出过程的影响,并采用SEM和EDS对浸出后矿物表面形貌和相组成进行表征。结果表明:相对分子质量大于200的PEG对Acidithiobacillus ferrooxidans Fe2+氧化活性具有一定的促进作用,添加30 mg/L PEG 2000时,浸出20 d后,铜浸出量高达451.70 mg/L,较不添加FEG时提高了1.11倍;添加PEG时,黄铜矿表面的侵蚀面呈沟壑状,出现溶蚀坑,并生成Fe3+的羟基化多聚物Fe(Ⅲ)—O—OH。PEG的添加提高了浸出体系中细菌浓度和Fe3+浓度,加速了黄铜矿的溶解。  相似文献   

8.
The effects of photogenerated-hole scavengers (ascorbic acid, oxalic acid, humic acid and citric acid) on chalcopyrite bioleaching in the presence of visible light were studied using Acidithiobacillus ferrooxidans (A. ferrooxidans). Four sets of bioleaching experiments were performed: (1) visible light + 0 g/L scavenger, (2) visible light + 0.1 g/L of different scavenger (ascorbic acid, oxalic acid, humic acid and citric acid), (3) dark + 0.1 g/L of different scavenger (ascorbic acid, oxalic acid, humic acid and citric acid), and (4) dark + 0 g/L scavenger (control group). The results showed that ascorbic acid and oxalic acid could act as photogenerated-hole scavengers and significantly enhance chalcopyrite bioleaching under visible light. The dissolved copper in the light group without scavenger was only 18.7% higher than that of the control group. The copper extraction rates of the light groups with oxalic acid and ascorbic acid were respectively 30.1% and 32.5% higher than those of the control group. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses indicated that ascorbic acid and oxalic acid as photogenerated-hole scavenger could capture photo-generated holes and inhibit jarosite formation on the chalcopyrite surface, thereby enhancing bioleaching of chalcopyrite under visible light.  相似文献   

9.
借助于X射线光电子能谱(XPS)和红外光谱(FTIR)等测试手段,研究黄药类捕收剂对嗜酸氧化亚铁硫杆菌LD-1菌株(At.f LD-1)浸出黄铜矿的抑制机理。XPS分析结果表明,与不加浮选药剂条件下所得浸渣相比,黄药类捕收剂的作用使浸渣表面Cu 2p电子结合能增高,Fe 2p和S 2p电子结合能降低,且黄药类捕收剂对铜浸出率抑制作用的强弱与电子结合能的偏移程度成正比;FTIR研究发现,At.f LD-1菌在黄铜矿表面发生了化学吸附,黄药类捕收剂在酸性条件下生成的醇类等物质在黄铜矿表面的吸附以及对At.f LD-1菌的毒害作用,导致浸渣表面红外特征吸收峰发生了偏移。  相似文献   

10.
This paper presents the effect of mineralization on chalcopyrite chemical leaching in very simple H2SO4 solution systems at pH 1.0, with 5 % chalcopyrite concentrate at 65℃. The copper extractions after 12 days leaching of marine volcanic and porphyry chalcopyrite were 85.7 and 66.6 %, respectively. It was found that sulphur element formed on the surface of two samples as a result of XRD and SEM-EDAX, which was very porous that did not inhibit chemical leaching reaction. Meanwhile, (Cu, Fe)12As4S13 formed on the surface of porphyry type chalcopyrite, which may cause low leaching ratio of porphyry type chalcopyrite as passivation. (Cu, Fe)12As4S13 may be one kind of the polysulphide compounds.  相似文献   

11.
This study is to assess the effect of magnesiumrich gangue dissolution on the ore containing chalcopyrite and carrollite from Democratic Republic of the Congo(DRC). The ore contains 11.0 wt% magnesium and 2.4wt% copper. When Mg2concentration is over 20 gáL-1after 2 months in column bioleaching, the redox potential of leachate keeps stable, much less than that when Mg2concentration is below 20 gáL-1. Meanwhile, the extractions of Cu2and Co2from chalcopyrite with carrollite obviously inhibited by Mg2concentration of over20 gáL-1were investigated. The extraction of cobalt depends on chalcopyrite dissolved in column reactor. The growth and oxidation activity of bacteria are affected by high Mg2concentration([20 gáL-1) in leachate of column reactor. As the rate of gangue dissolution depends on the amount of sulfuric acid, the decrease of the particle size relates to the increase of the total particle surface area and acid consumption. Therefore, the operation of pre-leaching for magnesium removal is not the most effective and economical way to solve the problem of magnesium-rich gangue minerals dissolution.  相似文献   

12.
Copper leaching from chalcopyrite concentrates   总被引:1,自引:0,他引:1  
Chalcopyrite (CuFeS2) is one of the most abundant copper-bearing minerals, which accounts for approximately 70 percent of the world’s known copper reserves. For more than 30 years, a significant number of processes have been developed to leach copper from chalcopyrite concentrates. These processes recover copper via hydrometallurgical leaching of the copper component of chalcopyrite concentrates, followed by solvent extraction and electrowinning. A number of demonstration plant operations have been conducted, but as of this writing none of the processes have become completely commercially operational. Shije Wang is senior engineer at Kennecott Utah Copper Corporation.  相似文献   

13.
黄铜矿生物浸出过程的硫形态转化研究进展   总被引:1,自引:0,他引:1  
黄铜矿生物浸出过程中会生成元素硫及其他含硫中间产物和衍生物,它们对黄铜矿溶解产生钝化或促进作用。研究黄铜矿生物浸出过程的硫形态转化,可以有效了解阻碍或促进黄铜矿生物浸出的关键物质形态以及影响这些形态形成的机制,从而为进一步了解黄铜矿的钝化机制、揭示黄铜矿的溶解机制奠定理论基础。介绍了黄铜矿生物浸出过程产生的含硫中间产物和衍生物及其硫形态转化研究的进展。  相似文献   

14.
The phase transformation of chalcopyrite and the effect of its phase status on bacterial leaching were studied. Under the protection of high-purity argon, different temperatures (203, 382 and 552 °C) were applied to natural chalcopyrite to complete the phase change. In addition, the chalcopyrite was bioleached before and after the phase change. The results show that the chalcopyrite heated at 203 and 382 °C remained in the α phase, whereas the chalcopyrite changed from α to β phase at 552 °C. The leaching rates of chalcopyrite after the phase transitions at 203, 382 and 552 °C were 32.9%, 40.5% and 60.95%, respectively. Further, the crystal lattice parameters of chalcopyrite increased and lattice energy decreased, which were the fundamental reasons for the significant increase in leaching rate. Electrochemical experiments demonstrated that with increasing annealing temperature, the polarization resistance decreased and corrosion current density increased. The higher the oxidation rate was, the higher the leaching rate was.  相似文献   

15.
The alteration of surface properties of chalcopyrite after biological conditioning with Acidithiobacillusferrooxidans and Acidithiobacillus caldus was evaluated by Zeta-potential, adsorption studies, FT-IR spectra and contact angle measurement. The Zeta-potential studies show that the iso-electric point(IEP) of chalcopyrite after bacterial treatment moves towards the IEP of pure cells, indicating the adsorption of cells on chalcopyrite surface. The FT-IR spectra of chalcopyrite treated with bacterial cells show the presence of the cell functional groups signifying cells adsorption. Due to the formation of elemental sulfur and intermediate copper sulphides on chalcopyrite surface, the contact angle and surface hydrophohicity of chalcopyrite increase at the initial bioleaching stage. Chalcopyrite bioleaching by Acidithiobacillus ferrooxidans has higher copper extraction, which agrees with the fact that Acidithiobacillus ferrooxidans adsorbed on chalcopyrite surface is much more than Acidithiobacillus caldus. The results support the direct mechanism of sulfide oxidations in bioleaching chalcopyrite.  相似文献   

16.
研究机械活化对黄铜矿粒度参数、显微组织和浸出性能的影响,并探讨活化过程中团聚和集聚的发生和转变.结果表明,研磨8h前黄铜矿的团聚与显微组织变化互不影响;然而,研磨8h后晶粒尺寸的降低达到极限,显微组织变化停滞,使得团聚被集聚取代.浸出实验结果表明,机械活化能显著提高黄铜矿的浸出性能,而集聚对浸出的阻碍作用远强于团聚.经...  相似文献   

17.
3种典型能量代谢菌浸出黄铜矿及其硫形态的转化   总被引:1,自引:0,他引:1  
比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV(vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。  相似文献   

18.
生物浸出过程中微生物协同作用机制的研究进展   总被引:1,自引:0,他引:1  
在生物浸出过程中,不同类型的浸矿微生物相互影响、相互促进,提高各自的代谢活动,从而提高金属浸出率。综述浸矿微生物协同作用的类型铁氧化菌与硫氧化菌、自养菌与异养菌、吸附菌与游离菌以及常温菌与高温菌的协同作用以及它们之间的作用机制,并分析协同作用的研究思路及生物浸出过程中矿物的溶解途径,重点介绍协同作用的研究方法和关键代谢产物及其作用。  相似文献   

19.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A. caldus,S. thermosulfidooxidans与L. ferriphilum浸出过程中,一硫化物(CuS)、二硫化物(S22?)、元素硫(S0)、多硫化物(Sn2?)与硫酸盐(SO42?)是黄铜矿表面的主要产物。在A. caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S. thermosulfidooxidans与L. ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

20.
利用扫描电镜(SEM)、同步辐射X射线衍射(SR-XRD)和X射线光电子能谱(XPS)研究在酸性氧化亚铁硫杆菌存在下,可见光和镉离子(Cd2+)对黄铜矿生物浸出的影响。生物浸出28天后的结果表明,光照下铜的溶解提高4.96%;Cd2+单独存在对黄铜矿的浸出有轻微的抑制作用;可见光和50mg/LCd2+同时存在时,溶解铜的浓度提高14.70%。化学浸出结果表明,可见光能促进体系中铁元素的循环。SEM结果显示,Cd2+在可见光下促进酸性氧化亚铁杆菌在黄铜矿表面的附着。综合SR-XRD和XPS结果可知,可见光和Cd2+促进黄铜矿的浸出,但不会抑制钝化物的形成。提出可见光和Cd2+对黄铜矿生物浸出协同催化作用机制的模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号