首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

2.
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2',7')-bis(carboxymethyl)- (5, 6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30-60 s) application of 25 mM NH4Cl increased pHi by approximately 1.3 U from a resting pHi approximately 6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.  相似文献   

3.
Intracellular calcium ([Ca2+]i) and hydrogen ion concentrations (pHi) are important regulators of cell function. Those ions also may interact and it is important, therefore, to measure their concentrations simultaneously. In the present studies we used a system developed for that purpose, a fluorescent emission ratio technique for simultaneous analysis of calcium (Indo-1) and pH (SNARF-1) in single cells at video rates, and determined if arginine vasopressin (AVP, 12.5 mumol/l) evoked [Ca2+]i and pHi signals interact in MDCK cells. We also employed a simple system for analysing the side specific (basolateral or apical) application of agonist to polarized cell layers on permeable membranes. AVP is found to evoke simultaneous changes in both pHi and [Ca2+]i. Basolateral application induced transient acidification, followed by partial recovery, and a [Ca2+]i transient with kinetic pattern similar to that of the pHi. Apical application also caused a mirror image pHi and [Ca2+]i pattern but of smaller magnitude (no peak). Selective removal of extracellular calcium ([Ca2+]e) or sodium ([Na+]e) dissociated the pHi and [Ca2+]i responses in both cases. Na+e removal abolished the pHi changes, but not the [Ca2+]i transients. [Ca2+]e removal abolished the [Ca2+]i changes and reduced, but did not abolish, the pHi responses. Thus, AVP induces pHi changes which are modified by calcium while calcium signalling is not modified by changes in pHi.  相似文献   

4.
The effect of secondary, tertiary and quaternary methyl- and ethylamines on intracellular pH (pHi) and intracellular Ca2+ activity ([Ca2+]i) of HT29 cells was investigated microspectrofluorimetrically using pH- and Ca2+- sensitive fluorescent indicators, [i.e. 2', 7'-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and fura-2 respectively]. Membrane voltage (Vm) was studied by the patch-clamp technique. Secondary and tertiary amines led to a rapid and stable concentration-dependent alkalinization which was independent of their pKa value. Trimethylamine (20 mmol/l) increased pHi by 0.78 +/- 0.03 pH units (n = 9) and pH remained stable for the application time. Removal led to an undershoot of pHi and a slow and incomplete recovery: pHi stayed 0.26 +/- 0.06 pH units more acid than the resting value. The quaternary amines, tetramethyl- and tetraethylamine were without influence on pHi. All tested secondary and tertiary amines (dimethyl-, diethyl-, trimethyl-, and triethyl-amine) induced a [Ca2+]i transient which reached a peak value within 10-25 s and then slowly declined to a [Ca2+]i plateau. The initial Delta[Ca2+]i induced by trimethylamine (20 mmol/l) was 160 +/- 15 nmol/l (n = 17). The [Ca2+]i peak was independent of the Ca2+ activity in the bath solution, but the [Ca2+]i plateau was significantly lower under Ca2+-free conditions and could be immediately interrupted by application of CO2 (10%; n = 6), a manoeuvre to acidify pHi in HT29 cells. Emptying of the carbachol- or neurotensin-sensitive intracellular Ca2+ stores completely abolished this [Ca2+]i transient. Tetramethylamine led to higher [Ca2+]i changes than the other amines tested and only this transient could be completely blocked by atropine (10(-6) mol/l). Trimethylamine (20 mmol/l) hyperpolarized Vm by 22.5 +/- 3.7 mV (n = 16) and increased the whole-cell conductance by 2.3 +/- 0.5 nS (n = 16). We conclude that secondary and tertiary amines induce stable alkaline pHi changes, release Ca2+ from intracellular, inositol-1,4, 5-trisphosphate-sensitive Ca2+ stores and increase Ca2+ influx into HT29 cells. The latter may be related to both the store depletion and the hyperpolarization.  相似文献   

5.
6.
BACKGROUND: We compared the effects of the nitric oxide donor sodium nitroprusside (SNP) on intracellular pH (pHi), intracellular calcium concentration ([Ca2+]i) transients, and cell contraction in hypertrophied adult ventricular myocytes from aortic-banded rats and age-matched controls. METHODS AND RESULTS: pHi was measured in individual myocytes with SNARF-1, and [Ca2+]i transients were measured with indo 1 simultaneously with cell motion. Experiments were performed at 37 degrees C in myocytes paced at 0.5 Hz in HEPES-buffered solution (extracellular pH = 7.40). At baseline, calibrated pHi, diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10(-6) mol/L SNP caused a decrease in the amplitude of cell contraction (72 +/- 7% of baseline, P < .05) that was associated with a decrease in pHi (-0.10 +/- 0.03 U, P < .05) with no change in peak systolic [Ca2+]i. In contrast, in the hypertrophied myocytes exposure to SNP did not decrease the amplitude of cell contraction or cause intracellular acidification (-0.01 +/- 0.01 U, NS). The cGMP analogue 8-bromo-cGMP depressed cell shortening and pHi in the control myocytes but failed to modify cell contraction or pHi in the hypertrophied cells. To examine the effects of SNP on Na(+)-H+ exchange during recovery from intracellular acidosis, cells were exposed to a pulse and washout of NH4Cl. SNP significantly depressed the rate of recovery from intracellular acidosis in the control cells compared with the rate in hypertrophied cells. CONCLUSIONS: SNP and 8-bromo-cGMP cause a negative inotropic effect and depress the rate of recovery from intracellular acidification that is mediated by Na(+)-H+ exchange in normal adult rat myocytes. In contrast, SNP and 8-bromo-cGMP do not modify cell contraction or pHi in hypertrophied myocytes.  相似文献   

7.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

8.
During ischemia or hypoxia, alterations in pHi may play a significant role in alteration of vessel wall function. We studied the effects of altering pHi on isometric force and [Ca2+]i in porcine coronary artery. pHi was altered at constant pHo by use of NH4Cl and measured with the fluorescent dye BCECF. [Ca2+]i was monitored with fura 2 and ratiometric fluorescence measurements. Addition of NH4Cl elicited a concentration-dependent (2 to 30 mmol/L) sustained increase in isometric force in unstimulated tissues. In tissues stimulated with KCl (29 mmol/L) or U46619 (1 mumol/L), addition of NH4Cl elicited a rapid but transient decrease followed by a sustained increase in force above the initial stimulated levels. Removal of NH4Cl was associated with a transient decrease and increase followed by a prolonged depression of force and slow recovery to initial levels. Addition of NH4Cl elicited a rapid monotonic increase in pHi and then a slow recovery toward initial levels; washout of NH4Cl led to a rapid acidification followed by recovery. In contrast to the steady state effects of NH4Cl on force, its effects on [Ca2+i were in the opposite direction. During the sustained increase in force elicited by NH4Cl alkalinization, [Ca2+]i was substantially decreased, whereas when force was depressed during the acidification elicited by NH4Cl washout, [Ca2+i was increased to values observed before addition of NH4Cl. The initial transients in force elicited by NH4Cl addition or washout were also associated with opposite changes in [Ca2+]i. Thus, the effects on force of the NH4Cl-induced changes in pHi are associated with changes in the Ca2+ sensitivity of the contractile apparatus rather than mediated through changes in [Ca2+]i.  相似文献   

9.
The effects of tri-n-butyltin chloride (TBT) on ionic homeostasis on isolated trout hepatocytes were investigated by flow cytometry (FCM), using the Ca(2+)-sensitive and pH-sensitive fluorescent probes Indo-1 and SNARF-1, respectively. Cell viability was monitored concurrently. Treatment of hepatocytes with 1 and 5 microM TBT caused a rapid and sustained elevation of cytosolic free Ca2+ concentration [Ca2+]i and an important cytoplasmic acidification. These changes were dependent upon TBT concentration and were maintained over 60 min, the maximum exposure period investigated. At 0.5 microM TBT, there was a slight but not significant increase in [Ca2+]i and a significant reduction in intracellular pH (pHi) only after 60 min of exposure. A rise in [Ca2+]i and cytoplasmic acidification were observed before loss of viability was detectable. Experiments carried out in Ca(2+)-free medium suggest that TBT mainly mobilizes Ca2+ from intracellular stores in trout hepatocytes. The cytoplasmic acidification following TBT exposure seems to be caused by the combination of intracellular Ca2+ mobilization and by direct action of TBT. The present results suggest that ionic homeostasis perturbations could be early events in the mechanism of cell injury by TBT.  相似文献   

10.
Neurons of the avian cochlear nucleus, nucleus magnocellularis (NM), are stimulated by glutamate, released from the auditory nerve, and GABA, released from both interneurons surrounding NM and from cells located in the superior olivary nucleus. In this study, the Ca2+ indicator dye Fura-2 was used to measure Ca2+ responses in NM stimulated by glutamate- and GABA-receptor agonists using a chicken brainstem slice preparation. Glutamatergically stimulated Ca2+ responses were evoked by kainic acid (KA), alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA), and N-methyl-D-aspartate (NMDA). KA- and AMPA-stimulated changes in [Ca2+]i were also produced in NM neurons stimulated in the presence of nifedipine, an L-type Ca2+ channel blocker, suggesting that KA- and AMPA-stimulated changes in [Ca2+]i were carried by Ca2(+)-permeable receptor channels. Significantly smaller changes in [Ca2+]i were produced by NMDA. When neurons were stimulated in an alkaline (pH 7.8) superfusate, NMDA responses were potentiated. KA- and AMPA-stimulated responses were not affected by pH. Several agents known to stimulate metabotropic receptors in other systems were tested on NM neurons bathed in a Ca2+ free-EGTA--buffered media, including L-cysteine sulfinic acid (L-CSA), trans-azetidine dicarboxylic acid (t-ADA), trans-aminocyclo-pentanedicarboxylic acid (t-ACPD), and homobromoibotenic acid (HBI). The only agent to reliably and dose-dependently increase [Ca2+]i was HBI, an analog of ibotenate. GABA also stimulated increases in [Ca2+]i in NM neurons. GABA-stimulated responses were reduced by agents that block voltage-operated channels and by agents that inhibit Ca2+ release from intracellular stores. Whereas GABA-A receptor agonist produced increases in [Ca2+]i GABA-B and GABA-C receptor agonists had no effect. There appear to be several ways for [Ca2+]i to increase in NM neurons. Presumably, each route represents a means by which Ca2+ can alter cellular processes.  相似文献   

11.
High concentrations of Zn2+ are found in presynaptic terminals of excitatory neurons in the CNS. Zn2+ can be released during synaptic activity and modulate postsynaptic receptors, but little is known about the possibility that Zn2+ may enter postsynaptic cells and produce dynamic changes in the intracellular Zn2+ concentration ([Zn2+]i). We used fura-2 and magfura-2 to detect the consequences of Zn2+ influx in cultured neurons under conditions that restrict changes in intracellular Ca2+ and Mg2+ concentrations. The resulting ratio changes for both dyes were reversed completely by the Zn2+ chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, indicating that these dyes are measuring changes in [Zn2+]i. We found that fura-2 was useful in measuring small increases in [Zn2+]i associated with exposure to Zn2+ alone that may be mediated by a Na+/Ca2+ exchanger. Magfura-2, which has a lower affinity for Zn2+, was more useful in measuring larger agonist-stimulated increases in [Zn2+]i. The coapplication of 300 microM Zn2+ and 100 microM glutamate/10 microM glycine resulted in a [Zn2+]i increase that was approximately 40-100 nM in magnitude and could be inhibited by the NMDA receptor antagonist, MK-801 (30 microM), or extracellular Na+. This suggests that Zn2+ influx can occur through at least two different pathways, leading to varying increases in [Zn2+]i. These findings demonstrate the feasibility of measuring changes in [Zn2+]i in neurons.  相似文献   

12.
A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in native pancreatic ducts stimulated by ATP and carbachol, CCH. Under control conditions both agonists led to similar changes in [Ca2+]i. However, these Ca2+ transients, consisting of peak and plateau phases, showed different sensitivities to various experimental manoeuvres. In extracellular Ca2+-free solutions, the ATP-induced [Ca2+]i peak decreased by 25%, but the CCH-induced peak was unaffected; both plateaus were inhibited by 90%. Flufenamate inhibited the ATP-induced peak by 35%, but not the CCH-evoked peak; the plateaus were inhibited by 75-80%. La3+ inhibited the ATP-induced plateau fully, but that induced by CCH by 55%. In resting ducts, an increase in extracellular pH, pHe, by means of HEPES and HCO3-/CO2 buffers, increased [Ca2+]i; a decrease in pHe had the opposite effect. In stimulated ducts the pH-evoked effects on Ca2+ influx were more pronounced and depended on the agonist used. At pHe 6.5 both ATP- and CCH-evoked plateaus were inhibited by about 50%. At pH 8.0 the ATP-stimulated plateau was inhibited by 27%, but that stimulated by CCH was increased by 72%. Taken together, we show that CCH stimulates Ca2+ release followed by Ca2+ influx that is moderately sensitive to flufenamate, La3+, depolarisation, it is inhibited by low pH, but stimulated by high pH. ATP stimulates Ca2+ release and probably an early Ca2+ influx, which is more markedly sensitive to flufenamate and La3+, and is both inhibited by low and high pH. Thus our study indicates that there are at least two separate Ca2+ influx pathways in pancreatic ducts cells.  相似文献   

13.
Theory suggests that the transmembrane pH gradient may be a major determinant of the distribution of lipophilic weak electrolytes across the cell membrane. The present study evaluates the extent to which this factor contributes to pH-dependent changes in the cytotoxicity of two such chemotherapeutic drugs: chlorambucil and mitoxantrone. Experiments were performed with two cell types of the same origin but exhibiting different pH gradients at the same extracellular pH (pHe): CHO cells cultured under normal physiological conditions (pH 7.4) and acid-adapted cells obtained by culturing under low pH conditions (6.8). Over the pHe range examined (6.0-7.6), the difference between intracellular pH (pHi) and pHe increased with decreasing pHe. Acid-adapted cells were more resistant to acute changes in pHi than normal cells, resulting in substantially larger gradients in these cells. Drug cell survival curves were performed at pHe values of 6.4, 6.8 and 7.4. The cytotoxicity of chlorambucil, a weak acid, increased with decreasing pHe, and low pH-adapted cells were more sensitive than normal cells at the same pHe. In contrast, for the weak base, mitoxantrone, cytotoxicity increased with pHe and was more pronounced in normal cells. As predicted by the theory, the cytotoxicity of both drugs changed exponentially as a function of the pH gradient, regardless of cell type. For mitoxantrone, the rate of such change in cytotoxicity with the gradient was approximately two times greater than for chlorambucil. This difference is probably due to the presence of two equally ionizable crucial groups on mitoxantrone vs one group on chlorambucil. It is concluded that the cellular pH gradient plays a major role in the pH-dependent modulation of cytotoxicity in these weak electrolytes. The data obtained also suggest that a pronounced differential cytotoxicity may be expected in vivo in tumour vs normal tissue. In comparison with normal cells at a pHe of 7.4 (a model of cells in normal tissues), acid-adapted cells at a pHe of 6.8 (a model of cells distal from supplying blood vessels in tumours) were more sensitive to chlorambucil, with a dose-modifying factor of approximately 6, and were more resistant to mitoxantrone by a factor of 14.  相似文献   

14.
15.
The effects of external pH (pHout) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pHout 6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 microM) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na(i)] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca(i)] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pHout 6. On the contrary, the external alkalinization (pHout 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pHout was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pHout changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pHout variations on [3H]GABA release were independent on the presence of HCO3-. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

16.
The aim was to investigate in detail the influence of intracellular pH (pHi) and intracellular Ca2+ concentration ([Ca2+]i) on apoptosis in HL-60 human promyelocytic leukaemia cells. The pHi was controlled by changing the pH of media as well as by interfering with the pHi regulatory mechanisms with 3-amino-6-chloro-5-(1-homopiperidyl)-N-(diaminomethylene) pyrazincarboxamide (HMA; an inhibitor of Na+/H+ antiport), 4-diiosothiocyanatostilbene-2,2'disulfonic acid, (DIDS; an inhibitor of Na(+)-dependent HCO3-/Cl- exchange) and nigericin (a K+ ionophore). The [Ca2+]i was increased with ionomycin, a Ca2+ ionophore. The apoptosis of HL-60 cells was measured with conventional agarose gel electrophoresis for DNA fragmentation and also with the release of 3H from 3H-thymidine-labelled DNA. Based on the magnitude of DNA fragmentation and 3H release at different pHi, it was shown that apoptosis occurred in HL-60 cells when the pHi was lowered from normal pHi of 7.4 to about 7.2-6.7 with a peak increase at pHi 6.8-6.9. Addition of 4 microM ionomycin to RPMI 1640 medium, which contained 615 microM Ca2+, elevated the apoptosis in the cells. Such an increase in apoptosis by ionomycin in HL-60 cells appeared to result from both an increase in [Ca2+]i and from a decline in pHi. The results indicate that the acidic intratumour environment may greatly affect the response of neoplastic tissues to hyperthermia, radiation and chemotherapeutic drugs which cause apoptosis.  相似文献   

17.
Jejunal villus cells from young-adult (6 months) and senescent (24 months) male Wistar rats were studied to evaluate the effect of aging on intracellular pH (pHi) regulation. pHi was measured by quantitative fluorescence microscopy by using BCECF-AM [2',7'-bis(carboxyethyl)-5(6)-carboxy-fluorescein acetoxy methylester] under basal conditions and after inducing cytoplasmic acidification with pulsed NH4Cl. In the senescent rats, the recovery rate from the acidified levels was significantly lower than that in the young-adult rats (.208 +/- .005 vs .255 +/- .004 pH units/min). The relationship between pHi recovery and external Na+ concentration followed Michaelis-Menten type kinetics, the maximum velocity (Vmax) of alkalinization being significantly lower in the senescent rats than in the young-adult rats (.227 +/- .033 vs .297 +/- .024 pH units/min). These results indicate that the recovery of pHi from an acidic level was slower in the senescent rats, due to the reduced activity of Na+/H+ exchange as revealed by the decreased Vmax value.  相似文献   

18.
To gain insight into neuronal-glial signaling in brain, cerebellar Bergmann glia and granule neurons were studied in acutely isolated slices with the aid of laser scanning confocal microscopy. Both Bergmann glia and granule neurons responded to N-methyl-D-aspartate (NMDA) with a rise in [Ca2+]i. However, the glial NMDA response was frequently inhibited by tetrodotoxin, suggesting that the response depended on neuronal action potentials, rather than on direct activation of NMDA receptors on the Bergmann glia. Further experiments demonstrated that the NMDA response in Bergmann glia was not inhibited by a combination of non-NMDA glutamate receptor blockers 6-cyano-7-nitroquinoxaline-2,3-dione and alpha-methyl-4-carboxyphenylglycine. Bergmann glia also responded to norepinephrine and high K+, and the responses were not inhibited by tetrodotoxin. The glial norepinephrine response was blocked by phentolamine but not by the removal of external Ca2+, indicating a direct activation of alpha1-adrenergic receptors that mediated release of Ca2+ from intracellular stores. The KCl-induced response in both neurons and glia was dependent on external Ca2+ and was blocked by verapamil or nifedipine. In summary, our data indicate that Bergmann glia in situ recognize a signal(s) released from neurons during neuronal activity.  相似文献   

19.
The changes in cytoplasmic pH (pHi) accompanying the morphological transition of Candida albicans were studied using a nongerminative variant. A transient cytoplasmic alkalinization at the time of evagination was observed in both the variant and its parent. Under zinc-deficient conditions the wild-type cells that formed buds at pH 4.5 and mycelia at pH 6.5 showed an increase in pHi of 0.58 and 0.12 pH units, respectively. Under similar conditions the pHi of the nongerminative variant that formed buds at both pH 4.5 and 6.5 increased by 0.66 and 0.40 pH units, respectively, suggesting that a greater magnitude of increase in pHi at the time of evagination is probably needed for bud formation. These results provide evidence for a correlation between intracellular alkalinization and time of cell differentiation in C. albicans.  相似文献   

20.
We have studied the properties of the protein kinase C (PKC) subspecies that modulates the NMDA receptor (NMDAR1). The current through homomeric NMDAR1 expressed in Xenopus oocytes was increased by 200-500% by phorbol ester and also by activation of a metabotropic glutamate receptor (mGluR1) expressed in the same oocytes. This potentiation of the NMDAR1 current was not inhibited by the intracellular injection of EGTA. Intracellular injection of epsilon-PKC, a presynaptic PKC subspecies, potentiated the NMDAR1 current more efficiently that did the Ca(2+)-dependent gamma-PKC, a postsynaptic subspecies of the enzyme. Our findings suggested that the presynaptic NMDA receptor could be potentiated in a Ca(2+)-independent manner by the activation of presynaptic PKC subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号