首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomically thin 2D layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, the fabrication of ReS2 field‐effect transistors is reported via the encapsulation of ReS2 nanosheets in a high‐κ Al2O3 dielectric environment. Low‐temperature transport measurements allow to observe a direct metal‐to‐insulator transition originating from strong electron–electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate‐tunable photoresponsivity up to 16.14 A W?1 and external quantum efficiency reaching 3168%, showing a competitive device performance to those reported in graphene, MoSe2, GaS, and GaSe‐based photodetectors. This study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.  相似文献   

2.
This work innovatively develops a dual solution‐shearing method utilizing the semiconductor concentration region close to the solubility limit, which successfully generates large‐area and high‐performance semiconductor monolayer crystals on the millimeter scale. The monolayer crystals with poly(methyl methacrylate) encapsulation show the highest mobility of 10.4 cm2 V?1 s?1 among the mobility values in the reported solution‐processed semiconductor monolayers. With similar mobility to multilayer crystals, light is shed on the charge accumulation mechanism in organic field‐effect transistors (OFETs), where the first layer on interface bears the most carrier transport task, and the other above layers work as carrier suppliers and encapsulations to the first layer. The monolayer crystals show a very low dependency on channel directions with a small anisotropic ratio of 1.3. The positive mobility–temperature correlation reveals a thermally activated carrier transport mode in the monolayer crystals, which is different from the band‐like transport mode in multilayer crystals. Furthermore, because of the direct exposure of highly conductive channels, the monolayer crystal based OFETs can sense ammonia concentrations as low as 10 ppb. The decent sensitivity indicates the monolayer crystals are potential candidates for sensor applications.  相似文献   

3.
The thin‐film structures of chemical sensors based on conventional organic field‐effect transistors (OFETs) can limit the sensitivity of the devices toward chemical vapors, because charge carriers in OFETs are usually concentrated within a few molecular layers at the bottom of the organic semiconductor (OSC) film near the dielectric/semiconductor interface. Chemical vapor molecules have to diffuse through the OSC films before they can interact with charge carriers in the OFET conduction channel. It has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze‐drying template method. The resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin‐film structure but also better than any previously reported OFET sensors, to the best of our knowledge. The porous OFETs show a relative sensitivity as high as 340% ppm?1 upon exposure to 10 parts per billion (ppb) NH3. In addition, the devices also exhibit decent selectivity and stability. This general and simple strategy can be applied to a wide range of OFET chemical sensors to improve the device sensitivity.  相似文献   

4.
Field‐effect transistors are the fundamental building blocks for electronic circuits and processors. Compared with inorganic transistors, organic field‐effect transistors (OFETs), featuring low cost, low weight, and easy fabrication, are attractive for large‐area flexible electronic devices. At present, OFETs with planar structures are widely investigated device structures in organic electronics and optoelectronics; however, they face enormous challenges in realizing large current density, fast operation speed, and outstanding mechanical flexibility for advancing their potential commercialized applications. In this context, vertical organic field‐effect transistors (VOFETs), composed of vertically stacked source/drain electrodes, could provide an effective approach for solving these questions due to their inherent small channel length and unique working principles. Since the first report of VOFETs in 2004, impressive progress has been witnessed in this field with the improvement of device performance. The aim of this review is to give a systematical summary of VOFETs with a special focus on device structure optimization for improved performance and potential applications demonstrated by VOFETs. An overview of the development of VOFETs along with current challenges and perspectives is also discussed. It is hoped that this review is timely and valuable for the next step in the rapid development of VOFETs and their related research fields.  相似文献   

5.
Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields, such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical warfare agents. The detection and identification of alkylating agent is not a trivial issue because of their high reactivity and simple structure. Here, a novel polythiophene derivative that is capable of reacting with alkylating agents is reported, along with its application in direct electrical sensing of alkylators using an organic field‐effect transistor, OFET, device. Upon reacting with alkylators, the OFET containing the new polythiophene analogue as its channel becomes conductive, and the gate effect is lost; this is in marked contrast to the response of the OFET to “innocent” vapors, such as alcohols and acetone. By following the drain–source current under gate bias, one can easily follow the processes of absorption of the analyte to the polythiophene channel and their subsequent reaction.  相似文献   

6.
A novel device structure for organic light‐emitting field‐effect transistors has been developed. The devices comprise bilayer‐crystal organic semiconductors of a p‐type and an n‐type. The pn‐junction can readily be formed by successively laminating two crystals on top of a gate insulator. This structure enables the efficient injection and transport of electrons and holes, leading to their effective recombination. As a result, bright emissions are attained. The devices are operated by AC gate voltages. Gate‐voltage phase‐resolved drain‐current and emission‐intensity measurements enable us to study the relationship between the emissions and carrier transport. The maximum external quantum efficiency reaches 0.045%.  相似文献   

7.
During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported.  相似文献   

8.
The organization of organic semiconductor molecules in the active layer of organic electronic devices has important consequences to overall device performance. This is due to the fact that molecular organization directly affects charge carrier mobility of the material. Organic field‐effect transistor (OFET) performance is driven by high charge carrier mobility while bulk heterojunction (BHJ) solar cells require balanced hole and electron transport. By investigating the properties and device performance of three structural variations of the fluorenyl hexa‐peri‐hexabenzocoronene (FHBC) material, the importance of molecular organization to device performance was highlighted. It is clear from 1H NMR and 2D wide‐angle X‐ray scattering (2D WAXS) experiments that the sterically demanding 9,9‐dioctylfluorene groups are preventing π–π intermolecular contact in the hexakis‐substituted FHBC 4 . For bis‐substituted FHBC compounds 5 and 6 , π–π intermolecular contact was observed in solution and hexagonal columnar ordering was observed in solid state. Furthermore, in atomic force microscopy (AFM) experiments, nanoscale phase separation was observed in thin films of FHBC and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) blends. The differences in molecular and bulk structural features were found to correlate with OFET and BHJ solar cell performance. Poor OFET and BHJ solar cells devices were obtained for FHBC compound 4 while compounds 5 and 6 gave excellent devices. In particular, the field‐effect mobility of FHBC 6 , deposited by spin‐casting, reached 2.8 × 10?3 cm2 V?1 s and a power conversion efficiency of 1.5% was recorded for the BHJ solar cell containing FHBC 6 and PC61BM.  相似文献   

9.
The realization and performance of a novel organic field‐effect transistor—the organic junction field‐effect transistor (JFET)—is discussed. The transistors are based on the modulation of the thickness of a depletion layer in an organic pin junction with varying gate potential. Based on numerical modeling, suitable layer thicknesses and doping concentrations are identified. Experimentally, organic JFETs are realized and it is shown that the devices clearly exhibit amplification. Changes in the electrical characteristics due to a variation of the intrinsic and the p‐doped layer thickness are rationalized by the numerical model, giving further proof to the proposed operational mechanism.  相似文献   

10.
Solution‐processed oxide semiconductors (OSs) used as channel layer have been presented as a solution to the demand for flexible, cheap, and transparent thin‐film transistors (TFTs). In order to produce high‐performance and long‐sustainable portable devices with the solution‐processed OS TFTs, the low‐operational voltage driving current is a key issue. Experimentally, increasing the gate‐insulator capacitances by high‐k dielectrics in the OS TFTs has significantly improved the field‐effect mobility of the OS TFTs. But, methodical examinations of how the field‐effect mobility depends on gate capacitance have not been presented yet. Here, a systematic analysis of the field‐effect mobility on the gate capacitances in the solution‐processed OS TFTs is presented, where the multiple‐trapping‐and‐release and hopping percolation mechanism are used to describe the electrical conductivity of the nanocrystalline and amorphous OSs, respectively. An intuitive single‐piece expression showing how the field‐effect mobility depends on gate capacitance is developed based on the aforementioned mechanisms. The field‐effect mobility, depending on the gate capacitances, of the fabricated ZnO and ZnSnO TFTs clearly follows the theoretical prediction. In addition, the way in which the gate insulator properties (e.g., gate capacitance or dielectric constant) affect the field‐effect mobility maximum in the nanocrystalline ZnO and amorphous ZnSnO TFTs are investigated.  相似文献   

11.
The synthesis of a new tetrathiafulvalene derivative with an electron‐withdrawing benzothiadiazole moiety and its use in thin‐film organic field‐effect transistors (OFETs) are reported. Compared to reported OFETs with other TTF derivatives, a high hole mobility up to 0.73 cm2 V?1 s?1, low off‐current and high on/off ratio up to 105 are demonstrated. In addition, the developed OFETs show fast responsiveness toward chemical vapors of DECP (diethyl chlorophosphate) or POCl3 which are simulants of phosphate‐based nerve agents. In contrast to previously reported OFET‐based sensors, off‐current is used as the output signal, which increases quickly upon exposure to either DECP or POCl3 vapors. High sensitivity is demonstrated toward DECP and POCl3 vapors, with concentrations as low as 10 ppb being detected. These OFETs are also responsive to TNT vapor. The sensing mechanisms for the new type of OFET are discussed.  相似文献   

12.
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.  相似文献   

13.
Electrolyte‐gated organic field‐effect transistors (OFETs) hold promise for robust printed electronics operating at low voltages. The polarization mechanism of thin solid electrolyte films, the gate insulator in such OFETs, is still unclear and appears to limit the transient current characteristics of the transistors. Here, the polarization response of a thin proton membrane, a poly(styrenesulfonic acid) film, is controlled by varying the relative humidity. The formation of the conducting transistor channel follows the polarization of the polyelectrolyte, such that the drain transient current characteristics versus the time are rationalized by three different polarization mechanisms: the dipolar relaxation at high frequencies, the ionic relaxation (migration) at intermediate frequencies, and the electric double‐layer formation at the polyelectrolyte interfaces at low frequencies. The electric double layers of polyelectrolyte capacitors are formed in ~1 µs at humid conditions and an effective capacitance per area of 10 µF cm?2 is obtained at 1 MHz, thus suggesting that this class of OFETs might operate at up to 1 MHz at 1 V.  相似文献   

14.
Polyelectrolytes are promising materials as gate dielectrics in organic field‐effect transistors (OFETs). Upon gate bias, their polarization induces an ionic charging current, which generates a large double layer capacitor (10–500 µF cm?2) at the semiconductor/electrolyte interface. The resulting transistor operates at low voltages (<1 V) and its conducting channel is formed in ~50 µs. The effect of ionic currents on the performance of the OFETs is investigated by varying the relative humidity of the device ambience. Within defined humidity levels and potential values, the water electrolysis is negligible and the OFETs performances are optimum.  相似文献   

15.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

16.
17.
The fabrication of a skin‐attachable, stretchable array of high‐sensitivity temperature sensors is demonstrated. The temperature sensor consists of a single‐walled carbon nanotube field‐effect transistor with a suspended gate electrode of poly(N‐isopropylacrylamide) (PNIPAM)‐coated gold grid/poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate and thermochromic leuco dye. The sensor exhibits a very high sensitivity of 6.5% °C?1 at temperatures between 25 and 45 °C. With increasing temperature, the suspended gate electrode bends due to the deswelling of the PNIPAM, resulting in the reduction of the air gap to increase the drain current under a constant gate voltage. At the same time, the leuco dye coated on top of the transparent gate electrode changes color to visualize changes in temperature. The 4 × 6 integrated temperature sensor array integrated using liquid metal interconnections exhibits mechanical and electrical stability under 50% biaxial stretching and allows for the spatial mapping of temperature with visual color display regardless of wrist movement while attached to the skin of the wrist. This work is expected to be widely useful in the development of skin‐attachable electronics for medical and health‐care monitoring.  相似文献   

18.
Biocompatible‐ingestible electronic circuits and capsules for medical diagnosis and monitoring are currently based on traditional silicon technology. Organic electronics has huge potential for developing biodegradable, biocompatible, bioresorbable, or even metabolizable products. An ideal pathway for such electronic devices involves fabrication with materials from nature, or materials found in common commodity products. Transistors with an operational voltage as low as 4–5 V, a source drain current of up to 0.5 μA and an on‐off ratio of 3–5 orders of magnitude have been fabricated with such materials. This work comprises steps towards environmentally safe devices in low‐cost, large volume, disposable or throwaway electronic applications, such as in food packaging, plastic bags, and disposable dishware. In addition, there is significant potential to use such electronic items in biomedical implants.  相似文献   

19.
The effect of dye‐doping in ambipolar light‐emitting organic field‐effect transistors (LE‐OFETs) is investigated from the standpoint of the carrier mobilities and the electroluminescence (EL) characteristics under ambipolar operation. Dye‐doping of organic crystals permits not only tuning of the emission color but also significantly increases the efficiency of ambipolar LE‐OFETs. A rather high external EL quantum efficiency (~0.64%) of one order of magnitude higher than that of a pure p‐distyrylbenzene (P3V2) single crystal is obtained by tetracene doping. The doping of tetracene molecules into a host P3V2 crystal has almost no effect on the electron mobility and the dominant carrier recombination process in the tetracene‐doped P3V2 crystal involves direct carrier recombination on the tetracene molecules.  相似文献   

20.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号