首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel halogen‐free flame retardant, O,O‐diethyl‐O‐allyl thiophosphate (DATP), which simultaneously contained phosphorus and sulfur, was synthesized through a simple method. The structure of DATP was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and mass spectroscopy. The flame‐retardant copolymer was obtained by the free‐radical copolymerization of DATP with acrylonitrile. The flammability and thermal degradation characteristics of the copolymer were assayed by limiting oxygen index measurement, thermogravimetric analysis, and differential scanning calorimetry. The results show that the incorporation of a small percentage of DATP into the copolymer had a significant effect on the retarding combustion of the copolymer, with the limiting oxygen index of the copolymer reaching 28.5% and the char yield being 68.63 wt % at 554°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The thermal degradation of three polymeric peroxides of styrene monomers with substituents in the para position was studied at various temperatures (65, 75, 85, and 95°C). A continuous distribution model was used to evaluate the rate coefficients for the random‐chain and chain‐end scission degradation from the evolution of molecular weight distributions with time. The activation energy determined from the temperature dependence of the rate coefficients was in the range 18–22 kcal mol?1. This result suggests that the thermal degradation of polyperoxide is controlled by the dissociation of the O—O bonds in the polymer backbone. The thermal stability for poly(p‐methylstyrene peroxide) lies in between that of poly(p‐tert‐butylstyrene peroxide) (highest) and poly(p‐bromostyrene peroxide) (lowest). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 957–961, 2002  相似文献   

3.
A copolymer of 4‐methoxybenzyl methacrylate and isobornyl methacrylate was synthesized by atom transfer radical polymerization. The structure of poly(4‐methoxybenzyl methacrylate‐co‐isobornyl methacrylate) was confirmed by means of Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The molecular weight distribution values of the copolymer were determined with gel permeation chromatography. The number‐average molecular weight and polydispersity index values of poly(4‐methoxybenzyl methacrylate‐co‐isobornyl methacrylate) were found to be 12,500 and 1.5, respectively. The kinetics of the thermal degradation of the copolymer was investigated with thermogravimetric analysis at different heating rates. The activation energy values obtained with the Kissinger, Flynn–Wall–Ozawa, and Tang methods were determined to be 166.38, 167.54, and 167.47 kJ/mol, respectively. Different integral and differential methods were used, and the results were compared with these values. Doyle approximation was also used for comparing the experimental results to master plots. An analysis of the experimental results suggested that the reaction mechanism was an R1 deceleration type in the conversion range studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The kinetics of the thermal and microwave‐assisted oxidative degradation of poly(ethylene oxide) were determined with potassium persulfate as the oxidizing agent. Gel permeation chromatography was used to determine the variation of the molecular weight with time. The degradation was studied as a function of the temperature and persulfate concentration, and it was found that the degradation rate increased with the temperature and concentration of persulfate. Continuous distribution kinetics were used to determine the rate coefficients for the degradation process, and the activation energies were obtained. The results indicated that the microwave‐assisted process had a lower activation energy of 10.3 kcal/mol, whereas that of the thermal degradation was 25.2 kcal/mol. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2090–2096, 2005  相似文献   

5.
2‐Ethenyl‐pyridine (EPD) was first used to successfully copolymerize with acrylonitrile (AN) in a H2O/dimethyl formamide (DMF) mixture by using azobisisobutyronitrile as the initiator. Kinetics of copolymerization and degradation of poly(AN‐ran‐EPD) were discussed. The kinetic equation of copolymerization and the apparent activation energy of degradation of poly(AN‐ran‐EPD) were obtained. In H2O‐rich reaction medium, copolymerization followed the suspension polymerization more, but in DMF‐rich reaction medium, copolymerization followed the solution polymerization more. Increase in DMF concentration in the solvent mixture lead to a rapid increase in the degradation apparent activation energy. The apparent activation energy decreased quickly with an increase in EPD concentration, and such a change became less prominent as the molar ratio of EPD/AN went beyond 3/100. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The degradation kinetics of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate), a member of the Nodax family of polymers, were investigated using transient constant shear rate and dynamic time sweep rheological tests. The rate of chain scission at several times and temperatures was correlated with viscosity data and verified using molecular weight determination of the degraded samples. The experimental results show that the molecular weight and the viscosity of Nodax decrease with time over the range of temperatures that were studied (155–175°C). The degradation kinetics, which exhibited first‐order behavior, were determined as a function of the flow history and thermal history. An apparent activation energy of 189 ± 5 kJ/mol for thermal degradation was found by modeling variations in the rate with temperature using an Arrhenius law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 66–74, 2005  相似文献   

7.
Amino ethyl‐2‐methyl propenoate (AEMP) was used successfully to copolymerize with acrylonitrile (AN). This was achieved by using azobisisobutyronitrile as the initiator. Kinetics of copolymerization of AN with AEMP was investigated in H2O/dimethylsulfoxide (DMSO) mixture between 50 and 70 °C under N2 atmosphere. The rate of copolymerization was measured. The kinetic equation of copolymerization system was obtained and the overall activation energy for the copolymerization system was determined. Values of monomer apparent reactivity ratios were calculated using Kelen–Tudos method. It has been found that the apparent reactivity ratios in aqueous suspension polymerization system are similar to those in solution polymerization system at polymerization conversion less than 25%. At conversion beyond 45%, the changes of monomer apparent reactivity ratios become less prominent. In water‐rich reaction medium (H2O/DMSO > 70/30), monomer apparent reactivity ratios are approximately equivalent to those in aqueous suspension polymerization system. In DMSO‐rich reaction medium (DMSO/H2O > 70/30), apparent reactivity ratios are similar to those in solution polymerization system. With an increase of polarity of solvent, values of apparent reaction ratios both decrease. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2095–2100, 2006  相似文献   

8.
The thermal decomposition behavior and degradation kinetics of poly(N‐adamantyl‐exo‐nadimide) were investigated with thermogravimetric analysis under dynamic conditions at five different heating rates: 10, 15, 20, 25, and 30°C/min. The derivative thermogravimetry curves of poly(N‐adamantyl‐exo‐nadimide) showed that its thermal degradation process had one weight‐loss step. The apparent activation energy of poly(N‐adamantyl‐exo‐nadimide) was estimated to be about 214.4 kJ/mol with the Ozawa–Flynn–Wall method. The most likely decomposition process was an F1 deceleration type in terms of the Coats–Redfern and Phadnis–Deshpande results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3003–3009, 2007  相似文献   

9.
Differential scanning calorimetry results of the degradation of poly[acrylonitrile‐co‐(N‐vinylpyrrolidone)] in air are presented. The apparent activation energy of degradation was calculated using Kissinger's method. The effect of copolymerization conditions on the apparent activation energy was studied. Increasing the dimethylformamide concentration in the solvent mixture led to a rapid increase in the degradation apparent activation energy. The apparent activation energy decreased rapidly with increase in the comononer N‐vinylpyrrolidone concentration, and this change becomes less prominent as the weight ratio of N‐vinylpyrrolidone/acrylonitrile rises above 5/95. The apparent activation energy also increases with increasing copolymerization temperature. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Poly(p‐dioxanone‐co‐ethyl ethylene phosphate)s were successfully synthesized by the ring‐opening copolymerization of p‐dioxanone and ethyl ethylene phosphate with triisobutyl aluminum as an initiator; this was confirmed by 1H‐NMR and infrared spectra. The effects of the reaction conditions, such as the feeding ratio of the monomers and the reaction temperature and time, on the molecular weight of the copolymers were also studied. The in vitro degradation results showed that the introduction of phosphate segments into the backbone chains of the copolymers led to an enhancement of the degradation rate of the copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5507–5511, 2006  相似文献   

11.
A new kind of thermotropic liquid crystalline, poly(oxybenzoate‐co‐trimethylene terephthalate), was prepared from p‐hydroxybenzoic acid (B) and poly(trimethylene terephthalate) (PTT or T) by melting polycondensation. The monomer ratio of B to T is 60:40. The dynamic thermogravimetric kinetics of the copolymer B/T (60:40) and PTT in nitrogen were analyzed by four single heating rate techniques and two multiple heating rate techniques. The effects of the heating rate and the calculating technique on the thermostable and degradation kinetic parameters of the B/T copolymer and PTT are systematically discussed. The four single heating rate techniques used in this work include Friedman, Freeman‐Carroll, Chang, and the second Kissinger techniques, whereas the two multiple heating rate techniques are the first Kissinger and Flynn‐Wall techniques. Additionally, the isothermal thermogravimetric kinetics of B/T (60:40) in nitrogen were investigated by the Flynn technique. The activation energy, the order, and the frequency factor of the degradation reaction for B/T (60:40) copolymer are determined to be 185 kJ/mol, 1.8, and 7.14 × 1013 min−1, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2025–2036, 2000  相似文献   

12.
The thermal stability and thermal oxidative degradation kinetics of polypropylene (PP) and flame‐retardant PP composites filled with untreated and treated magnesium hydroxide (MH) in air were studied by thermogravimetric analysis (TGA). The effect of the heating rate in dynamic measurements (5°C–30°C/min) on kinetic parameters such as activation energy was also investigated. The Kissinger and Flynn–Wall–Ozawa methods were used to determine the apparent activation energy for the degradation of neat PP and flame‐retardant PP composites. The results of TGA showed that the addition of untreated or treated MH improved the thermal oxidative stability of PP in air. The kinetic results showed that the apparent activation energy for degradation of flame‐retardant PP composites was much higher than that of neat PP, suggesting that the flame retardant used in this work had a great effect on the mechanisms of pyrolysis and combustion of PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1978–1984, 2007  相似文献   

13.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

14.
Poly(butylene succinate) (PBSu) and two PBSu‐rich poly(butylene succinate‐co‐propylene succinate)s were studied. Copolyesters were characterized as random copolymers, based on 13C‐NMR spectra. TGA‐FTIR was used to monitor the degradation products at a heating rate of 5°C/min under N2. FTIR spectra revealed that the major products were anhydrides, which were formed following two cyclic intramolecular degradation mechanisms by the breaking of the weak O‐CH2 bonds around succinate groups. Thermal stability at heating rates of 1, 3, 5, and 10°C/min under N2 was investigated using TGA. The model‐free methods of the Friedman and Ozawa equations are useful for studying the activation energy of degradation in each period of mass loss. The results reveal that the random incorporation of minor propylene succinate units into PBSu did not markedly affect their thermal resistance. Two model‐fitting mechanisms were used to determine the mass loss function f(α), the activation energy and the associated mechanism. The mechanism of autocatalysis nth‐order, with f(α) = αm(1 ? α)n, fitted the experimental data much more closely than did the nth‐order mechanism given by f(α) = (1 ? α)n. The obtained activation energy was used to estimate the failure temperature (Tf). The values of Tf for a mass loss of 5% and an endurance time of 60,000 h are 160.7, 155.5, and 159.3°C for PBSu and two the copolyesters, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
This study examines the isothermal treatment of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) powders and films. The PHB and PHBV crystallinities were determined using X‐ray diffractometry, and shown to increase with temperature (130–150°C) and then decreased from 55% to 45% at 180°C. The crystal morphology of crystal planes (101) and (111) became sharp at a high temperature. The weight average molecular weight (Mw) of PHB decreased from 1,028,000 to 41,800 g/mol when heated at 180°C for 30 min. The molecular weight of PHB decreased more rapidly than that of PHBV with time. No peak signal was observed in gel permeation chromatography after heating at 150°C because the solubility of PHB changed with crystallinity. The thermal behaviors of PHB and PHBV were analyzed by differential scanning calorimetry and thermogravimetric analysis. The roughness, contact angle, and surface morphology of PHB and PHBV films were also measured to determine the surface properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3659–3667, 2013  相似文献   

16.
An advanced heat‐resistant fiber (trade name Ekonol) spun from a nematic liquid crystalline melt of thermotropic wholly aromatic poly(p‐oxybenzoate‐p,p′‐biphenylene terephthalate) has been subjected to a dynamic thermogravimetry in nitrogen and air. The thermostability of the Ekonol fiber has been studied in detail. The thermal degradation kinetics have been analyzed using six calculating methods including five single heating rate methods and one multiple heating rate method. The multiple heating‐rate method gives activation energy (E), order (n), frequency factor (Z) for the thermal degradation of 314 kJ mol−1, 4.1, 7.02 × 1020 min−1 in nitrogen, and 290 kJ mol−1, 3.0, 1.29 × 1019 min−1 in air, respectively. According to the five single heating rate methods, the average E, n, and Z values for the degradation were 178 kJ mol−1, 2.1, and 1.25 × 1010 min−1 in nitrogen and 138 kJ mol−1, 1.0, and 6.04 × 107 min−1 in air, respectively. The three kinetic parameters are higher in nitrogen than in air from any of the calculating techniques used. The thermostability of the Ekonol fiber is substantially higher in nitrogen than in air, and the decomposition rate in air is higher because oxidation process is occurring and accelerates thermal degradation. The isothermal weight‐loss results predicted based on the nonisothermal kinetic data are in good agreement with those observed experimentally in the literature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1923–1931, 1999  相似文献   

17.
Poly(decamethylene 2‐oxoglutarate) [poly (DMOG)] was synthesized by a melt polycondensation reaction. The structure of poly(DMOG) was confirmed by means of Fourier transform infrared, 1H‐NMR, and 13C NMR spectroscopies. The molecular weight distribution values of poly(DMOG) were determined with size exclusion chromatography. The number‐average molecular weight, weight‐average molecular weight, and polydispersity index values of poly(DMOG) were found to be 13,200, 19,000, and 1.439, respectively. Also, characterization was made by thermogravimetry (TG)–dynamic thermal analysis. The kinetics of the thermal degradation of poly (DMOG) was investigated by thermogravimetric analysis at different heating rates. TG curves showed that the thermal decomposition of poly(DMOG) occurred in one stage. The apparent activation energies of thermal decomposition for poly(DMOG), as determined by the Tang method, the Flynn–Wall–Ozawa method, the Kissinger–Akahira–Sunose method, and the Coats–Redfern method were 122.5, 126.8, 121.4, and 122.9 kJ/mol, respectively. The mechanism function and pre‐exponential factor were also determined by the master plots method. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Thermal degradation of poly(dimethylsilylene) homopolymer (PDMS) and poly(tetramethyldisilylene‐co‐styrene) copolymer (PTMDSS) was investigated by pyrolysis‐gas chromatography and thermogravimetry (TG). PDMS decomposes by depolymerization, producing linear and cyclic oligomeric products, whereas PTMDSS decomposes by random degradation along the chain resulting in each monomeric product and various other combination products. The homopolymer was found to be much less stable than the copolymer. The decomposition mechanisms leading to the formation of various products are shown. The kinetic parameters of thermal degradation were evaluated by different integral methods using TG data. The activation energies of decomposition (E) for the homopolymer and the copolymer are found to be 122 and 181 kJ/mol, respectively, and the corresponding values of order of reaction are 1 and 1.5. The observed difference in the thermal stability and the values of the kinetic parameters for decomposition of these polymers are explained in relation with the mechanism of decomposition. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

19.
The electrospinning of polyglycolide (PGA), poly(L ‐lactide) (PLA), and poly(lactide‐co‐glycolide) (PLGA; L ‐lactide/glycolide = 50/50) was performed with chloroform or 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) as a spinning solvent to fabricate their nanofiber matrices. The morphology of the electrospun PGA, PLA, and PLGA nanofibers was investigated with scanning electron microscopy (SEM). The PLGA nanofibers, electrospun with a nonpolar chloroform solvent, had a relatively large average diameter (760 nm), and it had a relatively broad distribution in the range of 200–1800 nm. On the other hand, the PGA and PLA fibers, electrospun with a polar HFIP solvent, had a small average diameter (~300 nm) with a narrow distribution. This difference in the fiber diameters may be associated with the polarity of the solvent. Also, the in vitro degradation of PGA, PLA, and PLGA nanofiber matrices was examined in phosphate buffer solutions (pH 7.4) at 37°C. The degradation rates of the nanofiber matrices were fast, in the order of PGA > PLGA ? PLA. Structural and morphological changes during in vitro degradation were investigated with differential scanning calorimetry and wide‐angle X‐ray diffraction. For the PGA matrix, a significant increase in the crystallinity during the early stage was detected, as well as a gradual decrease during the later period, and this indicated that preferential hydrolytic degradation in the amorphous regions occurred with cleavage‐induced crystallization, followed by further degradation in the crystalline region. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 193–200, 2005  相似文献   

20.
It is indispensable to investigate hydrolytic degradation behavior to develop novel (bio)degradable polyesters. Biobased and biodegradable copolyesters poly(butylene adipate‐co ‐butylene furandicarboxylate) (PBAF) and poly(butylene succinate‐co ‐butylene furandicarboxylate) (PBSF) with BF molar fraction (?BF) between 40 and 60% were synthesized in this study. The hydrolytic degradation of film samples was conducted in a pH 7.0 PBS buffer solution at 25 °C. Slight mass loss (1–2%) but significant decrease in intrinsic viscosity (35–44%) was observed after 22 weeks. The apparent hydrolytic degradation rate decreased with increasing ?BF and initial crystallinity. Meanwhile, PBAFs degraded slightly faster than PBSFs with the same composition. The ?BF and crystallinity increased slowly with degradation time, suggesting the aliphatic moiety and the amorphous region are more susceptible to hydrolysis. And high enough tensile properties were retained after hydrolysis degradation, indicating PBAF and PBSF copolyesters are hydrolytically degradable, with tunable hydrolytic degradation rate and good balance between hydrolytic degradability and durability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44674.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号