首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioartificial polymeric materials in the form of hydrogels were prepared starting from blends of poly(vinyl alcohol) (PVOH) with gellan, using a procedure based on freeze–thawing cycles. The effect exerted by gellan on the properties of these materials was investigated. The materials were loaded with human growth hormone (GH) and the release of the drug was evaluated. The results obtained indicated that gellan favours the crystallization process of PVOH allowing the formation of a material with a more homogeneous and stable structure than that of pure PVOH hydrogels. Both the PVOH melting enthalpy and the elastic modulus increased with increasing gellan content in the hydrogels; in addition, the higher the gellan content in the samples, the lower was the amount of PVOH released. Gellan/PVOH hydrogels were able to release GH and the release was affected by the content of the biological component. The amount of GH released was within a physiological range. © 2001 Society of Chemical Industry  相似文献   

2.
Semi‐ and full‐interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) and polyethyleneimine (PEI) were prepared to investigate the bending behavior under the electric response. To find out the characteristics of the hydrogel in the medium, swelling ratio, and rate and water state of the hydrogels were measured. The swelling ratio of the semi‐IPN hydrogels increased with PEI content in the matrix, whereas that of full‐IPN hydrogels dramatically decrease with increase of PEI contents in the hydrogels. In the water state of hydrogel, the bound water and free water of semi‐IPN hydrogels increased with PEI weight ratio. The full‐IPN hydrogels show the lower free water content in comparison with the semi‐IPN hydrogel. The IPN hydrogels exhibited bending angle change in response to external stimulus such as voltage, the bending angle increased with PEI concentration. In addition, the repeated bending behaviors according to the magnitude of the applied electric field revealed that the bending angle is reversible without collapse of formation of hydrogel in all samples. Thus, the hydrogels will be useful as novel modulation systems in the field of artificial organ and matrix for drug delivery. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

4.
A series of physically crosslinked complex hydrogels of poly(vinyl alcohol) (PVA) and sodium carboxymethylcellulose (CMC) were prepared via physical mixing and a freeze/thaw technique. The morphology of the CMC/PVA complex gels was analyzed with differential scanning calorimetry and wide‐angle X‐ray diffraction. It was found that the crystallinity and melting temperature of the complex gels decreased, whereas the glass‐transition temperature increased, with an increase in the content of CMC. The reswelling of the complex gels was pH‐responsive and relied on the content of CMC and the freeze/thaw cycles. A network structure model of the complex gel was presented. PVA crystalline regions served as physical crosslinks; the interaction between CMC and PVA resulted in intramolecular entanglements. It was also found that the model drug hemoglobin was released completely from the complex hydrogels in 4 h, and its release rate increased with an increase in the content of CMC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A novel, physically stabilized hydrogel system composed of chitosan (Chi) or its derivatives [e.g., carboxymethyl chitosan (CMC), sodium carboxymethyl chitosan, or trimethyl carboxymethyl chitosan (TMCMC)] with poly(vinyl pyrrolidone) (PVP) or opened‐ring poly(vinyl pyrrolidone) (OR–PVP) were prepared and characterized. TMCMC was synthesized by a novel method with dimethylsulfate as the methylation agent. The synthesized materials were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and size exclusion chromatography. The mechanical properties, gel fraction, swelling behavior, and water state of the prepared hydrogels were investigated. Gelation occurred when the OR–PVP and Chi solutions were blended within a few seconds. However, the gelation of the OR–PVP and CMC solutions needed pH adjustment. No gelation occurred when the solutions of TMCMC and PVP or OR–PVP were blended. The quaternization or protonization of  NH2 groups may have prevented the gelation of the solutions. The amino groups of Chi derivatives should have been free to take part in hydrophilic bonds between the two polymers. The physical entanglement of polymeric chains and strong hydrogen bonds between the polymers were considered as mechanisms for the formation of the physical hydrogels. The physical hydrogels showed ionic and pH‐sensitive swelling properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The complexation of poly(acrylic acid) (PAA) with Cu2+ ions in a dilute aqueous solution has been investigated as a function of the mixing molar ratio of the two species and the neutralization degree (i) of PAA by means of turbidimetry, viscometry, potentiometry, and ultraviolet–visible (UV–vis) spectrophotometry. Turbidimetry reveals that, for i > 0.1, phase separation takes place when the mixing ratio approaches the critical value of two carboxylate ions per Cu2+ ion, which is indicative of the formation of a 2 : 1 polymer/metal complex. This complex is very compact, as evidenced by the very low reduced viscosity values obtained just before phase separation. The variation of the fraction of complexed carboxylate anions and complexed Cu2+ ions can be followed as a function of the mixing ratio and i from the analysis of the potentiometric results for i < 0.5. Finally, the combination of the potentiometric and UV–vis spectrophotometric results supports the idea that both mononuclear and binuclear PAA/Cu2+ complexes are formed in an aqueous solution, depending on the mixing ratio and i. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
This work describes a comprehensive study of hydrogels based on polyethylene glycol diacrylates (PEGDAs) with the molecular weight (MW) range of 400–2000. The blends of low‐ and high‐molecular weight PEGDA macromers with different ratios were photopolymerized under visible light irradiation, using a blue light sensitive photoinitiator Irgacure819, at the total polymer concentration of 60 wt %. Swelling ratios, wetting property, elastic moduli, transparency, and the microstructure of the resulting hydrogels were investigated. Among them, equilibrium water contents, hydrophilicity, and mesh size of the hydrogels increased while the elastic moduli decreased when increased the PEGDA MW or the content of higher MW PEGDA in the blends. Most of the hydrogels possessed excellent transparency in visible region. The viability of L929 cells on the surface of hydrogel was also estimated. All the selected hydrogels exhibited a relatively high proliferation rate, which demonstrated this hydrogel system with photoinitiator Irgacure819 had good biocompatibility. These results show the properties of PEGDA hydrogel could be easily adjusted by varying PEGDA MW or the ratios of low‐ and high‐MW macromers in the composites. It could be helpful for the design of proper PEGDA hydrogels in the applications as tissue engineering or drug delivery system. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
To avoid the negative effect of graphene oxide (GO) nanosheets aggregation in aqueous solutions on physicochemical properties of GO incorporated nanocomposite hydrogels, poly(vinyl alcohol)-functionalized GO (GO-es-PVA) are synthesized and are used for preparation of nanocomposite hydrogels. By graft copolymerization of GO-es-PVA with poly(AA-co-AAm) chains, the nanocomposite hydrogel samples with covalently incorporated GO-es-PVA are achieved. FTIR spectroscopy, XRD analysis, and SEM and EDAX techniques confirm successful synthesis process. It is clear that GO-es-PVA content has significant effect on physicochemical properties of nanocomposite hydrogels, such as improvement of the water uptake properties, porosity, and gel strength. The hydrogel sample with 1:80 mass ratio of GO-es-PVA/AAm has the best physicochemical properties due to the optimum amount of GO-es-PVA, which gives the hydrogel proper viscoelasticity as well as fine porosity and water uptake rate. Interpenetration of PVA chains into the polymeric networks makes the movement of the polymer chains easier, which leads to softer polymeric networks. This phenomenon is called plasticizing effect. The plasticizing nature of PVA and its high hydrophilicity are the main reasons for the fine physicochemical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48025.  相似文献   

9.
In these studies, hydrogels for wound dressings were made from a mixture of aloe vera and poly(vinyl alcohol) (PVA)/poly(N‐vinylpyrrolidone) (PVP) by freezing and thawing, γ‐Ray irradiation, or a two‐step process of freezing and thawing and γ‐ray irradiation. We examined the physical properties, including gelation, water absorptivity, gel strength, and degree of water evaporation, to evaluate the applicability of these hydrogels for wound dressings. The PVA:PVP ratio was 6:4, the dry weight of aloe vera was in the range 0.4–1.2 wt %, and the solid concentration of the PVA/PVP/aloe vera solution was 15 wt %. We used γ radiation doses of 25, 35, and 50 kGy to expose mixtures of PVA/PVP/aloe vera to evaluate the effect of radiation dose on the physical properties of the hydrogels. Gel content and gel strength increased as the concentration of aloe vera in the PVA/PVP/aloe vera gels decreased and as radiation dose increased and the number of freeze–thaw cycles was increased. The swelling degree was inversely proportional to the gel content and gel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1477–1485, 2003  相似文献   

10.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Polyaniline functionalized with imidazole as strategically designed receptor group in its backbone was synthesized for copper binding. The synthesized polymer has been characterized using FTIR, NMR, and UV‐Vis spectroscopic techniques. The addition of copper (II) to the polymer distinctly changes the properties such as crystallinity, molecular weight, aggregation, and electronic properties. XRD, DLS, SEM, and four‐point probe techniques have been used for study of these changes. It is observed that the secondary ion generated as a result of copper coordination results in the doping of the polyaniline backbone, which enhances the conductivity by one order of magnitude. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Starch‐g‐poly(acrylic acid) and poly[(acrylic acid)‐co‐acrylamide] synthesized via chemically crosslinking polymerization were then each mixed with inorganic coagulants of aluminum sulfate hydrate [Al2(SO4)3·18H2O], calcium hydroxide [Ca(OH)2], and ferric sulfate [Fe2(SO4)3] in a proper ratio to form complex polymeric flocculants (CPFs). All CPFs exhibited low water absorbency than those of the uncomplexed superabsorbent copolymers. The color reduction by the CPFs was tested with both synthetic wastewater and selected wastewater samples from textile industries. The synthetic wastewater was prepared from a direct dye in a concentration of 50 mg dm?3 at pH 7. The CPFs of poly[(acrylic acid)‐co‐acrylamide] with calcium hydroxide at a ratio of 1:2 is the most effective CPF for the wastewater color reduction. The CPF concentration of 500 mg dm?3 could reduce the color of the synthetic wastewater containing the direct dye solution by 95.4% and that of the industrial wastewater by 76%. Starch‐g‐poly(acrylic acid)/Ca(OH)2 CPF can reduce the synthetic direct dye and the industrial wastewater by 74% and 18%, respectively. Chemical oxygen demand, residual metal ion concentrations, pHs, turbidity of the wastewater were also investigated and the potential use of the complex polymer flocculants for textile wastewater treatment was indicated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2915–2928, 2006  相似文献   

13.
Novel sorbents based on silica coated with polyethylenimine (SilPEI) and crosslinked with poly(carboxylic acid) were prepared and characterized. These sorbents are to be used for heavy metal decontamination of aqueous solutions and have to be prepared in easy and ecological ways. A part of the carboxylic moieties [from ethylenediaminetetraacetic acid (EDTA) or citric acid] reacts with some of the amine groups of polyethylenimine, initially coated onto the silica, whereas the other part remains free for further metal complexation. By changing various parameters (temperature, pH, presence or absence of an amide‐forming agent), the conditions to prepare the best sorbent—that is, the sorbent exhibiting both a high capacity for metal complexation and good stability in an acidic medium (conditions for metal desorption or stripping)—were defined. The sorbent was prepared by a reaction of 1 g of SilPEI and 1 g of EDTA in water at 0°C, pH 6, during 10 h, using 0.5 g of 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride as a coupling agent. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 799–805, 2003  相似文献   

14.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

15.
Hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMCh) were synthesized via ultraviolet (UV) irradiation that can be used in several industrial fields. Several analysis tools were used to characterize the physical and thermal properties of CMCh/PVA hydrogels namely FT‐IR, scanning electron microscope (SEM), XRD, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). TGA results showed that CMCh/PVA hydrogels are thermally more stable than CMCh and their thermal stability increases as PVA content increases in the hydrogel. Also, DSC results showed that CMCh/PVA hydrogels are at least partial miscible blends. Moreover, the swelling behavior of the CMCh/PVA hydrogels was studied in different buffered solutions and in different salt solutions at various concentrations. CMCh/PVA hydrogels swell much more than CMCh especially at alkaline pH. Both metal and dye uptake were studied for CMCh/PVA hydrogels. The hydrogels adsorb much more dyestuff and metal ions like Cu2+, Cd2+, and Co2+ than CMCh itself. Much dyestuff and metal ions are adsorbed by the hydrogels as PVA content increases in the hydrogel. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
This contribution describes the absorption percentage of Pb2+ and Cu2+ from water by a superabsorbent hydrogel matrix (SH) made from an anionic polysaccharide copolymerized with acrylic acid (AAc) and acrylamide (AAm). Metal‐absorption tests, upon sequential pH variation, indicated that the SH has pH‐sensitivity for the absorption of both metals from solution, attributed to the functional ionic groups (? COOH) present in the AAc and arabic gum (AG) segments. At the pH 5.0, the SH exhibited good absorption capacity: 73.10% for Pb2+, 81.99% for Cu2+ in water and 63.64% for Pb2+, and 76.67% for Cu2+ in saline water with 0.1 mol kg?1 ionic strength. A replicated 22 full factorial design with a central point was built to evaluate the maximum absorption capacity of the metals into the SH. It was found that both the interaction and main effects of the pH and the initial concentration of metal solution on absorption percentage of the metals were statistically significant. Surface response plots indicated that the absorption capacity of both metals into the SH may be appreciably improved by using the solutions with lower initial concentration of metal and with higher pH values. Metal‐absorption results demonstrated that the SH is a convenient material for absorption of Pb2+ and Cu2+ from pure aqueous and saline aqueous environments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
The crosslinked resins poly(4‐vinylpiridine) (PVPy) and poly(acrylic acid) (PAA) were obtained by radical polymerization. PVPy shows monodentate ligands and PAA at basic pH is basically as acrylate anion, which can contain end‐carboxylates groups or form a bridge acting as mono‐ or bidentate ligands. The retention properties for trace metal ions from saline aqueous solutions and natural seawaters of these two resins were investigated by Batch equilibrium procedure. The metal ions studied were Cu(II), Pb(II), Cd(II), and Ni(II). The following effects were studied: pH, contact time, amount of the adsorbent, temperature, and salinity. The resin PVPy showed a high affinity for Cd(II) and PAA for Cu(II) and Cd(II). The metal ions were determined in the filtrate by atomic absorption spectrometry. By the treatment of the loaded resin with 4M HNO3, it was possible to remove completely the Cu(II) ions. The retention properties of the resins were studied for trace metal ions present in the natural seawaters. Both resins showed a high affinity for Cd(II) when the natural seawater contained Cu(II) and Cd(II). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2908–2916, 2004  相似文献   

18.
We used silica particles as a porogen to prepare macroporous chitosan membranes and subsequently prepared macroporous chitosan/Cu(II) affinity membranes for urea adsorption. The morphology, porosity, Cu(II) adsorption capacity, and swelling ratio of the macroporous membrane were measured. SEM photographs show the pores in the membrane dispersed uniformly, a feature that didn't change much after the adsorption of Cu(II). The porosity of the membrane had a maximum value when the silica/chitosan ratio was about 12. The Cu(II) adsorption capacity in the membrane leveled off when the initial concentration of CuSO4 solution exceeded 5 × 10?2 mol/L. The macroporous chitosan/Cu(II) affinity membrane was successfully used for urea adsorption. The maximum urea adsorption capacity was 78.8 mg/g membrane, which indicates that the membrane has a great potential for hemodialysis for urea removal. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1108–1112, 2003  相似文献   

19.
Temperature‐ and pH‐responsive semiinterpenetrating polymer network (SIPN) hydrogels, constructed with chitosan (CS) and poly(diallyldimethylammonium chloride) (PDADMAC), were studied. The characterizations of the IPN hydrogels were investigated by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and swelling tests, under various conditions. CS/PDADMAC SIPN hydrogels exhibited a relatively high swelling ratio, in the range of 248–462%, at 25°C. The swelling ratio of CS/PDADMAC IPN hydrogels are pH, temperature, and ionic concentration dependent. DSC was used for the quantitative determination of the amounts of freezing and nonfreezing water. The amount of free water increased with increasing PDADMAC content in the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2876–2880, 2004  相似文献   

20.
In this article, hydrogels were prepared by compounding polyvinylpyrrolidone (PVP) with poly(vinyl alcohol) (PVA), which is used as artificial cartilages, by means of repeating freezing and thawing and irradiation, for improving their mechanical and surface lubricative properties. The structures and properties, including gel content, crystallized degree, elastic modulus, and frictional coefficients of the compound hydrogels with different PVP contents and irradiative conditions, were examined and compared. The existence of PVP macromolecules interfered with the crystallization of PVA hydrogels resulted in the decrease of gel contents and elastic modulus, as well as the unstable external frictional coefficient in water. After irradiation treatment, these performances increased with irradiation intensity in lower dose ranges. The solubility and exudation of PVP in water were prevented and reduced because of the chemical crosslink of PVA and PVP, and the lubricative properties of PVA/PVP hydrogels in water were improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号