首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Among the mesoporous silica micellar templated structures (MTSs), MSU‐X silica, obtained through an N0I0 assembly between non‐ionic polyethyleneoxide‐based surfactants (N0) and silica neutral inorganic precursors (I0), exhibits a regular ordered structure with a 3D wormhole porous framework and an easily controlled pore size. These materials have been tested for applications requiring both a narrow mesopore size distribution and isotropic properties. A specific double‐step synthesis that we developed recently for MSU‐X materials has allowed us to prepare mesoporous silica particles with the required shape, size, and properties. Both the particles’ synthesis and comparative HPLC separation tests with a commercial ungrafted silica HPLC powder of identical shape and size are reported.  相似文献   

2.
Hierarchical silica nanotubes with radially oriented mesoporous channels perpendicular to the central axis of the tube were synthesized by using self‐assembled chiral anionic surfactant, co‐structure directing agent (CSDA) and silica precursor. The average inner diameter and the wall thickness were ∼94, ∼62, and ∼62 nm and to ∼27, ∼33, and ∼45 nm, respectively, by manipulating the synthesis gel composition, while the diameter of the wall mesopores was kept constant at ∼4 nm. These materials with such a unique structure were produced only with chiral surfactant and achiral or racemic surfactant did not give rise to mesoporous silica nanotubes. The existence of helicity in the lipid bilayer template was confirmed by means of circular dichroism spectroscopy. The mesoporous penetrating from outside to inside of silica nanotubes are thought to originate from the initial formation of self‐assembled lipid tubes with helical bilayers, which in turn re‐assemble to form the mesopores in the wall of the nanotubes upon addition of co‐structure directing agent and silica source.  相似文献   

3.
Swelling‐agent‐free synthesis of mesocellular foam (MCF)‐like silica mesophases by a pH‐dependent structural transformation using carboxy‐terminated triblock copolymer Pluronic P123 has been discovered. The structural properties of the MCF‐like silica materials can be modulated by controlled calcination or post‐synthesis treatment with sulfuric acid, and either closed‐cell or open‐cell mesostructures have been prepared. The MCF‐like silica mesophases have also been applied as hard templates to prepare MCF‐like carbon materials via a nanocasting route. Furthermore, the swelling‐agent‐free synthesis has been found to be less sensitive to the presence of organosilanes, and the cocondensation syntheses of functional MCF‐like materials with carboxyethyl, iodopropyl, or mercaptopropyl groups have also been demonstrated.  相似文献   

4.
Aluminum‐containing plugged mesoporous silica has been successfully prepared in an aqueous solution that contains triblock copolymer templates, nitrates, and silica sources but without using mineral acid. The acidity of the solution can be finely tuned from pH 1.4 to 2.8 according to the amount of the introduced aluminum species which ranged from an Al/Si molar ratio of 0.25/1 to 4.0/1. The aluminum nitrate additive in the starting mixture, along with the weak acidity produced by the nitrates, contributes to the formation of plugged hexagonal structures and the introduction of different amounts of aluminum species into the mesostructure. Characterization by X‐ray diffraction, transmission electron microscopy, and N2 sorption measurements show that the Al‐containing plugged silicas possess well‐ordered hexagonal mesostructures with high surface areas (700–860 m2 g–1), large pore volume (0.77–1.05 cm3 g–1) and, more importantly, combined micropores and/or small mesopores in the cylindrical channels. Inductively coupled plasma–atomic emission spectrometry results show that 0.7–3.0 wt % aluminum can be introduced into the final samples. 27Al MAS NMR results display that about 43–60% aluminum species are incorporated into the skeleton of the Al‐containing silicas and the amount of the framework aluminum increases as the initial added nitrates rises. Scanning electron microscopy images reveal that the directly synthesized Al‐containing plugged silica has a similar morphology to that of traditional SBA‐15. Furthermore, the Al‐containing plugged samples have excellent performances in the adsorption and the catalytic decomposition of isopropyl alcohol and nitrosamine. Finally, the direct synthesis method is used to produce plugged mesoporous silicas that contain other metals such as chromium and copper, and the resultant samples also show good catalytic activities.  相似文献   

5.
A general solvent‐free assembly approach via directly heating amino acid and mesoporous silica mixtures is developed for the synthesis of a family of highly nitrogen‐doped mesoporous carbons. Amino acids have been used as the sole precursors for templating synthesis of a series of ordered mesoporous carbons. During heating, amino acids are melted and strongly interact with silica, leading to effective loading and improved carbon yields (up to ≈25 wt%), thus to successful structure replication and nitrogen‐doping. Unique solvent‐free structure assembly mechanisms are proposed and elucidated semi‐quantitatively by using two affinity scales. Significantly high nitrogen‐doping levels are achieved, up to 9.4 (16.0) wt% via carbonization at 900 (700) °C. The diverse types of amino acids, their variable interactions with silica and different pyrolytic behaviors lead to nitrogen‐doped mesoporous carbons with tunable surface areas (700–1400 m2 g?1), pore volumes (0.9–2.5 cm3 g?1), pore sizes (4.3–10 nm), and particle sizes from a single template. As demonstrations, the typical nitrogen‐doped carbons show good performance in CO2 capture with high CO2/N2 selectivities up to ≈48. Moreover, they show attractive performance for oxygen reduction reaction, with an onset and a half‐wave potential of ≈?0.06 and ?0.14 V (vs Ag/AgCl).  相似文献   

6.
Herein, we demonstrate an ammonia nitridation approach to synthesize self‐supported ordered mesoporous metal nitrides (CoN and CrN) from mesostructured metal oxide replicas (Co3O4 and Cr2O3), which were nanocastly prepared by using mesoporous silica SBA‐15 as a hard template. Two synthetic routes are adopted. One route is the direct nitridation of mesoporous metal oxide nanowire replicas templated from SBA‐15 to metal nitrides. By this method, highly ordered mesoporous cobalt nitrides (CoN) can be obtained by the transformation of Co3O4 nanowire replica under ammonia atmosphere from 275 to 350 °C, without a distinct lose of the mesostructural regularity. Treating the samples above 375 °C leads to the formation of metallic cobalt and the collapse of the mesostructure due to large volume shrinkage. The other route is to transform mesostructured metal oxides/silica composites to nitrides/silica composites at 750–1000 °C under ammonia. Ordered mesoporous CrN nanowire arrays can be obtained after the silica template removal by NaOH erosion. A slowly temperature‐program‐decrease process can reduce the influence of silica nitridation and improve the purity of final CrN product. Small‐angle XRD patterns and TEM images showed the 2‐D ordered hexagonal structure of the obtained mesoporous CoN and CrN nanowires. Wide‐angle XRD patterns, HRTEM images, and SAED patterns revealed the formation of crystallized metal nitrides. Nitrogen sorption analyses showed that the obtained materials possessed high surface areas (70–90 m2 g?1) and large pore volumes (about 0.2 cm3 g?1).  相似文献   

7.
Herein a novel synthetic route is described for the production of thermally stable, structurally well‐defined two‐dimensional (2D) hexagonal mesoporous nanocrystalline anatase (meso‐nc‐TiO2), with a large pore diameter, narrow pore‐size distribution, high surface area, and robust inorganic walls comprised of nanocrystalline anatase. The synthetic approach involves the evaporation‐induced co‐assembly of a non‐ionic amphiphilic triblock‐copolymer template and titanium tetraethoxide, but with a pivotal change in the main solvent of the system, where the commonly used ethanol is replaced with 1‐butanol. This seemingly minor modification in solvent type from ethanol to 1‐butanol turns out to be the key synthetic strategy for achieving a robust, structurally well‐ordered meso‐nc‐TiO2 material in the form of either thick or thin films. The beneficial “solvent” effect originates from the higher hydrophobicity of 1‐butanol than ethanol, enhancing microphase separation and templating, lower critical micelle concentration of the template in 1‐butanol, and the ability to increase the relative concentration of the inorganic precursor to template in the co‐assembly synthesis. Moreover, thin films with dimensions of several centimeters that are devoid of cracks down to the length scale of the mesostructure itself, having high porosity, well‐defined mesostructural features, and semi‐crystalline pore walls were straightforwardly and reproducibly obtained as a result of the physicochemical property advantages of 1‐butanol over ethanol within our synthesis scheme.  相似文献   

8.
Selective targeting of tumor cells and release of drug molecules inside the tumor microenvironment can reduce the adverse side effects of traditional chemotherapeutics because of the lower dosages required. This can be achieved by using stimuli‐responsive targeted drug delivery systems. In the present work, a robust and simple one‐pot route is developed to synthesize polymer‐gatekeeper mesoporous silica nanoparticles by noncovalent capping of the pores of drug‐loaded nanocontainers with disulfide cross‐linkable polymers. The method offers very high loading efficiency because chemical modification of the mesoporous nanoparticles is not required; thus, the large empty pore volume of pristine mesoporous silica nanoparticles is entirely available to encapsulate drug molecules. Furthermore, the polymer shell can be easily decorated with a targeting ligand for selective delivery to specific cancer cells by subsequent addition of the thiol‐containing ligand molecule. The drug molecules loaded in the nanocontainers can be released by the degradation of the polymer shell in the intracellular reducing microenvironment, which consequentially induces cell death.  相似文献   

9.
Functionalized mesoporous silica materials (MSMs) are extensively investigated in sensing science due to their diverse structural and optical properties including tunable pore size, modifiable surface properties, and excellent accessibility to active sites. In the last few years, great efforts have been devoted to developing modification methods for MSMs for sensing applications with augmented sensitivity, super selectivity, as well as targeting capability, and multimodal capabilities. The functional group, structure, morphology, and component levels in the assembly of heterostructures of MSMs are a key for high sensing performance. As the development of mesoporous silica‐based sensing materials progresses, diverse functional units and materials are rationally implemented into the mesoporous structures. These heterostructures can maintain the excellent structural features of mesoporous silica and the optical properties of the functional units simultaneously, which shows the advantages of photostability, design flexibility, and multifunctionality. Here, an up‐to‐date overview of the fabrication strategies, the properties, and the sensing mechanisms of optical heterostructures based on MSMs is provided. A number of crucial sensing domains, including ionic, molecules, temperature, and biological species are highlighted. Finally, the prospects and potential sensing applications of mesoporous silica‐based optical heterostructures are discussed.  相似文献   

10.
A simple synthesis route to mesoporous carbons that contain heteroaromatic functionality is described. The sulfur‐functionalized mesoporous carbon (S‐FMC) materials that have been prepared show excellent thermal stability, as well as excellent hydrothermal stability, and stability over a wide range of pH values. These materials also show excellent mercury sorption performance over a broad range of pH, much broader than is possible with thiol‐based functionality or most silica‐based sorbents. The superior performance of these mesoporous heterocarbons as heavy‐metal sorbent material is demonstrated. These materials are shown to be stable at elevated temperatures and extreme pHs, making them ideally suited as a new class of absorbent material.  相似文献   

11.
Order mesoporous carbon spheres (O‐MCS) have wide applications in catalysis, absorption, and energy storage/conversion due to their ordered mesoporous channels, large surface areas, and quantum effects in the nanoscale. However, realizing a precise control of large mesoporous size still remains a big challenge. Herein, an encapsulated self‐activation strategy to prepare highly ordered mesoporous carbon spheres with precise tunable large pore sizes is first reported. The large mesopore size is achieved by encapsulating mesoporous polymer sphere in compact silica shell for pyrolysis process. Moreover, the self‐activation mechanism endows the O‐MCS high surface area, large mesoporous size, and pore volume. In addition, simply increasing the amount of silica precursor will enlarge the pore sizes of O‐MCS from 3.1 to 10.0 nm with increased specific surface area from 696 to 1186 m2 g?1. The large order mesoporous structure of O‐MCS, which can facilitate diffusion of guest molecules in the channels exhibit great advantage in the adsorption and electrochemical applications.  相似文献   

12.
Significant anisotropic electrical conduction in organosilica films is achieved by long‐range orientation of electroactive perylene bisimide (PBI) moieties in the silica scaffold. A new PBI‐based organosilane precursor is designed with lyotropic liquid‐crystalline properties. The PBI precursor with triethoxysilylphenyl groups exhibits a hexagonal columnar phase in the presence of organic solvents. The lyotropic liquid‐crystalline behavior of the precursor enables the preparation of dip‐coated films consisting of uniaxially aligned columnar aggregates of the PBI precursor on the centimeter scale. The oriented structure is successfully fixed by in situ polycondensation, which yields insoluble, thermally stable PBI–silica hybrid films. The oriented organosilica films doped with hydrazine exhibit high electrical conductivities on the order of 10?2 S cm?1, which are at the highest level for organosilica materials, and are comparable to those of all‐organic PBI assemblies. Definite anisotropy of conductivities is also found for these films. The present results suggest that the induction of significant electrical properties in organic molecular assemblies is compatible with the structural stabilization by inorganic–organic hybridization.  相似文献   

13.
A novel photon‐fueled gate‐like mesoporous silica nanoparticles (MSN)‐based delivery system is reported. In this system, the malachite green carbinol base (MGCB) is immobilized on the nanochannel wall of MSN as a light‐induced hydroxide ion emitter and i‐motif DNA is grafted on the surface of MSN as a cap. Photoirradiation with 365 nm wavelength UV light makes MGCB molecules dissociate into malachite green (MG) cations and OH? ions, which induce the i‐motif DNA to unfold into the single‐stranded form due to the increase of the pH in the solution. Therefore, the pores are uncapped and the entrapped guest molecules are released. After the light is turned off, the MG cations recombine with the OH? ions and return to the MGCB forms. The pH value thus decreases and the single‐stranded DNA switches back to i‐motif structure to cap the pore again. Because of the photon‐fueled MGCB‐dependent DNA conformation changes, the i‐motif DNA‐gated switch can be easily operated by turning the light on or off. Importantly, the opening/closing protocol is highly reversible and a partial cargo release can be easily achieved at will. This proof‐of‐concept may promote the application of DNA in the controlled release and can also provide a way to design various photon‐fueled controlled‐release systems using a combination of some photoirradiated pH‐jump systems and other kinds of pH‐sensitive linkers.  相似文献   

14.
A facile approach of solvent‐evaporation‐induced coating and self‐assembly is demonstrated for the mass preparation of ordered mesoporous carbon‐silica composite monoliths by using a polyether polyol‐based polyurethane (PU) foam as a sacrificial scaffold. The preparation is carried out using resol as a carbon precursor, tetraethyl orthosilicate (TEOS) as a silica source and Pluronic F127 triblock copolymer as a template. The PU foam with its macrostructure provides a large, 3D, interconnecting interface for evaporation‐induced coating of the phenolic resin‐silica block‐copolymer composites and self‐assembly of the mesostructure, and endows the composite monoliths with a diversity of macroporous architectures. Small‐angle X‐ray scattering, X‐ray diffraction and transmission electron microscopy results indicate that the obtained composite monoliths have an ordered mesostructure with 2D hexagonal symmetry (p6m) and good thermal stability. By simply changing the mass ratio of the resol to TEOS over a wide range (10–90%), a series of ordered, mesoporous composite foams with different compositions can be obtained. The composite monoliths with hierarchical macro/mesopores exhibit large pore volumes (0.3–0.8 cm3 g?1), uniform pore sizes (4.2–9.0 nm), and surface areas (230–610 m2 g?1). A formation process for the hierarchical porous composite monoliths on the struts of the PU foam through the evaporation‐induced coating and self‐assembly method is described in detail. This simple strategy performed on commercial PU foam is a good candidate for mass production of interface‐assembly materials.  相似文献   

15.
Here, the development of ordered mesoporous silica prepared by the reaction of layered silicates with organoammonium surfactants is reviewed. The specific features of mesoporous silica are discussed with relation to the probable formation mechanisms. The recent understanding of the unusual structural changes from the 2D structure to periodic 3D mesostructures is presented. The formation of mesophase silicates from layered silicates with single silicate sheets depends on combined factors including the reactivity of layered silicates, the presence of layered intermediates, the variation of the silicate sheets, and the assemblies of surfactant molecules in the interlayer spaces. FSM‐16‐type (p6mm) mesoporous silica is formed via layered intermediates composed of fragmented silicate sheets and alkyltrimethylammonium (CnTMA) cations. KSW‐2‐type (c2mm) mesoporous silica can be prepared through the bending of the individual silicate sheets with intralayer and interlayer condensation. Although the structure of the silicate sheets changes during the reactions with CnTMA cations in a complex manner, the structural units caused by kanemite in the frameworks are retained. Recent development of the structural design in the silicate framework is very important for obtaining KSW‐2‐based mesoporous silica with molecularly ordered frameworks. The structural units originating from layered silicates are chemically designed and structurally stabilized by direct silylation of as‐synthesized KSW‐2. Some proposed applications using these mesoporous silica are also summarized with some remarks on the uniqueness of the use of layered silicates by comparison with MCM‐type mesoporous silica.  相似文献   

16.
Sol–gel condensation of tetraethoxysilane in the presence of designed self‐assembled β‐sheet peptide fibril templates, followed by template extraction, yields hollow silica nanotubes. The nanotubes are hundreds of nanometers long and possess a central pore of ~ 3.5 nm, determined by the fibril template diameter. The effects of synthesis conditions have been investigated and the resultant silica materials characterized by various techniques. Silica nanostructures with various morphologies have been produced previously using supramolecular organic assemblies as templates. Hollow nano‐ or microtubes, which may have applications in separations, catalysis, nano‐optics, and ‐electronics have been of particular interest. Peptide‐based templates are especially interesting because of their relevance to biological silica microstructure formation. The new fibrillar peptide templates described here have the advantages of prescribed diameter, twist pitch, and handedness, which should impart chirality on the resulting silica nanotubes, providing control of the internal surface architecture by appropriate peptide design.  相似文献   

17.
The achievement of structural control over thioether‐bridged mesoporous organosilicas is reported. The mesoporous materials have been synthesized by co‐condensation of bis[3‐(triethoxysilyl)propyl]tetrasulfide (TESPTS) and tetramethoxysilane (TMOS) in acetic acid/sodium acetate buffer solution (HAc–NaAc, pH 4.4), using the nonionic surfactant P123 as a template. The mesostructure of the material is mainly controlled by the molar ratio of TESPTS/TMOS in the initial gel mixture. A mesophase transformation, progressing from a highly ordered 2D hexagonal structure via a vesiclelike structure to a mesostructured cellular foam, can be clearly observed when the molar ratio of TESPTS/TMOS is increased in increments. Solid‐state NMR results show that TESPTS is not completely hydrolyzed and condensed at the applied buffer conditions. At low concentrations, the unhydrolyzed TESPTS can penetrate into the core of the surfactant micelles and change the packing parameter of the P123 surfactant. Above a certain concentration, the TESPTS can form a microemulsion with P123 surfactant molecules. Therefore, the vesiclelike structure or cellular foam structure can be synthesized by simply controlling the molar ratio of TESPTS/TMOS. This approach provides a novel method for the facile synthesis of organic–inorganic hybrid materials with a controllable mesostructure under mild synthetic conditions.  相似文献   

18.
We report the sequential transformation of vinyl groups into hydroborate and alcohol as well as vinyl into epoxide and diol functional groups in hexagonal mesoporous vinylsilica materials, denoted meso‐vinyl‐SiO2. The first transformation proceeds quantitatively through the hydroborylated derivative. After appropriate quenching, the hydroborylated materials are stable at ambient conditions and can undergo transformation into alcohols and various other functional groups. The pore volume and pore size uniformity were found not to be greatly affected by quenching of the hydroboranes with methanol, but they were reduced by quenching with water due to the deposition of boron‐containing species in the channels. Complete conversion of hydroborylated materials to alcohol‐functionalized materials required basic conditions and treatment time of several hours. Although this led to a significant structural shrinkage, decrease in pore volume, and decrease in ordering, there was no evidence of a partial collapse or removal of substantial parts of the pore walls under optimized synthesis conditions. This is the first successful conversion of organic groups of a functionalized ordered mesoporous silica host in alkaline solution, conditions known to be detrimental for silica frameworks. Epoxidation of the vinyl groups and subsequent conversion of the resulting epoxides into diols are also briefly described. The chemical transformation through epoxidation affords ordered mesoporous silica materials functionalized with potentially chiral organic groups, which could find applications in asymmetric catalysis and chiral separations. It was found that the epoxidation was slower than hydroboration and resulted in a lower degree of conversion. These two examples of hydroboration–alcoholysis and epoxidation–ring opening reactions of terminally bonded vinyl groups in meso‐vinyl‐SiO2 demonstrate the novel concept of sequential organic chemical transformations harbored inside the ordered channels of mesoporous organosilica materials.  相似文献   

19.
A route to synthesize ZSM‐5 crystals with a bimodal micro/mesoscopic pore system has been developed in this study; the successful incorporation of the mesopores within the ZSM‐5 structure was performed using tetrapropylammonium hydroxide (TPAOH)‐impregnated mesoporous materials containing carbon nanotubes in the pores, which were encapsulated in the ZSM‐5 crystals during a solid rearrangement process within the framework. Such mesoporous ZSM‐5 zeolites can be readily obtained as powders, thin films, or monoliths.  相似文献   

20.
A novel drug‐formulation protocol is developed to solve the delivery problem of hydrophobic drug molecules by using inorganic mesoporous silica nanocapsules (IMNCs) as an alternative to traditional organic emulsions and liposomes while preserving the advantages of inorganic materials. The unique structures of IMNCs are engineered by a novel fluoride‐silica chemistry based on a structural difference‐based selective etching strategy. The prepared IMNCs combine the functions of organic nanoemulsions or nanoliposomes with the properties of inorganic materials. Various spherical nanostructures can be fabricated simply by varying the synthetic parameters. The drug loading amount of a typical highly hydrophobic anticancer drug‐camptothecin (CPT) in IMNCs reaches as high as 35.1 wt%. The intracellular release of CPT from carriers is demonstrated in situ. In addition, IMNCs can play the role of organic nanoliposome (multivesicular liposome) in co‐encapsulating and co‐delivering hydrophobic (CPT) and hydrophilic (doxorubicin, DOX) anticancer drugs simultaneously. The co‐delivery of multi‐drugs in the same carrier and the intracellular release of the drug combinations enables a drug delivery system with efficient enhanced chemotherapeutic effect for DOX‐resistant MCF‐7/ADR cancer cells. The special IMNCs‐based “inorganic nanoemulsion”, as a proof‐of‐concept, can also be employed successfully to encapsulate and deliver biocompatible hydrophobic perfluorohexane (PFH) molecules for high intensity focused ultrasound (HIFU) synergistic therapy ex vivo and in vivo. Based on this novel design strategy, a wide range of inorganic material systems with similar “inorganic nanoemulsion or nanoliposome” functions will be developed to satisfy varied clinical requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号