首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of controlled thermal annealing on charge transport and photogeneration in bulk‐heterojunction solar cells made from blend films of regioregular poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10–8 m2 V–1 s–1 in as‐cast devices to ≈3 × 10–7 m2 V–1 s–1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2 × 10–8 m2 V–1 s–1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red‐shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge‐carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non‐annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short‐circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.  相似文献   

2.
Coupling between colloidal semiconductor nanocrystals (NCs) with long‐range order is critical for designing advanced nanostructures with controlled energy flow and charge carrier transport. Herein, under the premise of keeping long‐range order in 2D NC monolayer, its native organic ligands are exchanged with halogen ions in situ at the liquid–air interface to enhance the coupling between NCs. Further treatments on the films with dimethyl sulfoxide, methanol, or their mixture effectively improve carrier mobility of the devices. The devices show repeatable enhanced p‐type transport behavior with hole mobility of up to 0.224 ± 0.069 cm2 V?1 s?1, the highest value reported for lead sulfide NC solids without annealing treatment. Thanks to accurate control over the surface of NCs as well as the structure of NC film, the ordered NC monolayer film of high hole mobility suggests great potentials for making reliable high performance devices.  相似文献   

3.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices.  相似文献   

4.
In this paper we report on printed bulk heterojunction solar cells from poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) with power efficiencies of over 4 %. Devices have been produced by doctor blading, which is a reel‐to‐reel compatible large‐area coating technique. Devices exhibit a short‐circuit current of over 11.5 mA cm–2, a fill factor of 58 %, and an open‐circuit voltage of 615 mV, resulting in an AM1.5 power efficiency of over 4.0 % at 25 °C and under 100 mW cm–2. The mismatch factor of the solar simulator is cross‐calibrated by determining the spectral quantum efficiency of organic devices as well as of a calibrated Si device, and by the combination of outdoor tests; these efficiencies are precise within less than 3 % relative variation. Although the devices are regarded as fairly optimized, analysis in terms of a one‐diode equivalent circuit reveals residual losses and loss mechanisms. Most interestingly, the analysis points out the different properties of spin‐coated versus bladed devices. Based on this analysis, the future efficiency potential of P3HT–PCBM solar cells is analyzed.  相似文献   

5.
A water‐soluble conjugated polymer (WCP) poly[(3,4‐dibromo‐2,5‐thienylene vinylene)‐co‐(p‐phenylene‐vinylene)] (PBTPV), containing thiophene rings with high charge‐carrier mobility and benzene rings with excellent solubility is designed and prepared through Wessling polymerization. The PBTPV precursor can be easily processed by employing water or alcohols as the solvents, which are clean, environmentally friendly, and non‐toxic compared with the highly toxic organic solvents such as chloroform and chlorobenzene. As a novel photoelectric material, PBTPV presents excellent hole‐transport properties with a carrier mobility of 5 × 10?4 cm2 V?1 s?1 measured in an organic field‐effect transistor device. By integrating PBTPV with aqueous CdTe nanocrystals (NCs) to produce the active layer of water‐processed hybrid solar cells, the devices exhibit effective power conversion efficiency up to 3.3%. Moreover, the PBTPV can form strong coordination interactions with the CdTe NCs through the S atoms on the thiophene rings, and effective coordination with other nanoparticles can be reasonably expected.  相似文献   

6.
Ga doped ZnO (GZO) films prepared by sputtering at room temperature were rapid thermal annealed (RTA) at elevated temperatures. With increasing annealing temperature up to 570°C, film transmission enhanced significantly over wide spectral range especially in infrared region. Hall effect measurements revealed that carrier density decreased from ∼8 × 1020 to ∼ 3 × 1020 cm−3 while carrier mobility increased from ∼15 to ∼28 cm2/Vs after the annealing, and consequently low film resistivity was preserved. Hydrogenated microcrystalline Si (µc‐Si:H) and microcrystalline Si1‐xGex (µc‐Si1‐xGex:H, x = 0.1) thin film solar cells fabricated on textured RTA‐treated GZO substrates demonstrated strong enhancement in short‐circuit current density due to improved spectral response, exhibiting quite high conversion efficiencies of 9.5% and 8.2% for µc‐Si:H and µc‐Si0.9Ge0.1:H solar cells, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We present a combined charge transport and X-ray diffraction study of blends based on regioregular poly(3-hexylthiophene) (P3HT) and the polyfluorene co-polymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2′,2′′-diyl) (F8TBT) that are used in efficient all-polymer solar cells. Hole mobility is observed to increase by nearly two orders of magnitude from less than 10?7 cm2 V?1 s?1 for as spin-coated blends to 6 × 10?6 cm2 V?1 s?1 for blends annealed at 453 K at a field of 2.7 × 105 V/cm, but still significantly below the time-of-flight mobility of unblended P3HT of 1.7 × 10?4 cm2 V?1 s?1. The hole mobility of the blends also show a strong negative electric-field dependence, compared with a relatively flat electric-field dependence of unblended P3HT, suggestive of increased spatial disorder in the blends. X-ray diffraction measurements reveal that P3HT/F8TBT blends show a phase separation of the two components with a crystalline part attributed to P3HT and an amorphous part attributed to F8TBT. In as-spun and mildly annealed blends, the measured d-values and relative intensities of the 100, 200 and 300 P3HT peaks are noticeably different to unblended P3HT indicating an incorporation of F8TBT in P3HT crystallites that distorts the crystal structure. At higher anneal temperatures the blend d-values approach that of unblended P3HT suggesting a well separated blend with pure P3HT crystallites. P3HT crystallite size in the blend is also observed to increase with annealing from 3.3 to 6.1 nm, however similar changes in crystallite size are observed in unblended P3HT films with annealing. The lower mobility of P3HT/F8TBT blends is attributed not only to increased P3HT structural disorder in the blend, but also due to the blend morphology (increased spatial disorder). Changes in hole mobility with annealing are interpreted in terms of the need to form percolation networks of P3HT crystallites within an F8TBT matrix, with a possible contribution due to the intercalation of F8TBT in P3HT crystallites acting as defects in the as-prepared state.  相似文献   

8.
The correlation between morphology and optoelectronic performance in organic thin‐film transistors based on blends of photochromic diarylethenes (DAE) and poly(3‐hexylthiophene) (P3HT) is investigated by varying molecular weight (Mw = 20–100 kDa) and regioregularity of the conjugated polymer as well as the temperature of thermal annealing (rt‐160 °C) in thin films. Semicrystalline architectures of P3HT/DAE blends comprise crystalline domains, ensuring efficient charge transport, and less aggregated regions, where DAEs are located as a result of their spontaneous expulsion from the crystalline domains during the self‐assembly. The best compromise between field‐effect mobility (μ) and switching capabilities is observed in blends containing P3HT with Mw = 50 kDa, exhibiting μ as high as 1 × 10?3 cm2 V?1 s?1 combined with a >50% photoswitching ratio. Higher or lower Mw than 50 kDa are found to be detrimental for field‐effect mobility and to lead to reduced device current switchability. The microstructure of the regioregular P3HT blend is found to be sensitive to the thermal annealing temperature, with an increase in μ and a decrease in current modulation being observed as a response to the light‐stimulus likely due to an increased P3HT‐DAE segregation, partially hindering DAE photoisomerization. The findings demonstrate the paramount importance of fine tuning the structure and morphology of bicomponent films for leveraging the multifunctional nature of optoelectronic devices.  相似文献   

9.
A soluble graphene, which has a one‐atom thickness and a two‐dimensional structure, is blended with poly(3‐hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of the P3HT, indicating a strong electron/energy transfer from the P3HT to the graphene. In the photovoltaic devices with an ITO/PEDOT:PSS/P3HT:graphene/LiF/Al structure, the device efficiency increases first and then decreases with the increase in the graphene content. The device containing only 10 wt % of graphene shows the best performance with a power conversion efficiency of 1.1%, an open‐circuit voltage of 0.72 V, a short‐circuit current density of 4.0 mA cm−2, and a fill factor of 0.38 under simulated AM1.5G conditions at 100 mW cm−2 after an annealing treatment at 160 °C for 10 min. The annealing treatment at the appropriate temperature (160 °C, for example) greatly improves the device performance; however, an annealing at overgenerous conditions such as at 210 °C results in a decrease in the device efficiency (0.57%). The morphology investigation shows that better performance can be obtained with a moderate content of graphene, which keeps good dispersion and interconnection. The functionalized graphene, which is cheap, easily prepared, stable, and inert against the ambient conditions, is expected to be a competitive candidate for the acceptor material in organic photovoltaic applications.  相似文献   

10.
In this study, we report high performance organic solar cells with spray coated hole‐transport and active layers. With optimized ink formulations we are able to deposit films with controlled thickness and very low surface roughness (<10 nm). Specifically we deposit smooth and uniform 40 nm thick films of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as well as films composed of a mixture of poly(3‐hexyl thiophene) (P3HT) and the C60‐derivative (6,6)‐phenyl C61‐butyric acid methyl ester (PCBM) with thicknesses in the range 200–250 nm. To control film morphology, formation and thickness, the optimized inks incorporate two solvent systems in order to take advantage of surface tension gradients to create Marangoni flows that enhance the coverage of the substrate and reduce the roughness of the film. Notably, we achieve fill factors above 70% and attribute the improvement to an enhanced P3HT crystallization, which upon optimized post‐drying thermal annealing results in a favorable morphology. As a result, we could extend the thickness of the layer to several hundreds of nanometers without noticing a substantial decrease of the transport properties of the layer. By proper understanding of the spreading and drying dynamics of the inks we achieve spray coated devices with power conversion efficiency of 3.75%, with fill factor, short circuit current and open circuit voltage of 70%, 9.8 mA cm?2 and 550 mV, respectively.  相似文献   

11.
In this study, we report high performance organic solar cells with spray coated hole‐transport and active layers. With optimized ink formulations we are able to deposit films with controlled thickness and very low surface roughness (<10 nm). Specifically we deposit smooth and uniform 40 nm thick films of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as well as films composed of a mixture of poly(3‐hexyl thiophene) (P3HT) and the C60‐derivative (6,6)‐phenyl C61‐butyric acid methyl ester (PCBM) with thicknesses in the range 200–250 nm. To control film morphology, formation and thickness, the optimized inks incorporate two solvent systems in order to take advantage of surface tension gradients to create Marangoni flows that enhance the coverage of the substrate and reduce the roughness of the film. Notably, we achieve fill factors above 70% and attribute the improvement to an enhanced P3HT crystallization, which upon optimized post‐drying thermal annealing results in a favorable morphology. As a result, we could extend the thickness of the layer to several hundreds of nanometers without noticing a substantial decrease of the transport properties of the layer. By proper understanding of the spreading and drying dynamics of the inks we achieve spray coated devices with power conversion efficiency of 3.75%, with fill factor, short circuit current and open circuit voltage of 70%, 9.8 mA cm?2 and 550 mV, respectively.  相似文献   

12.
Here the influence of annealing on the operational efficiency of all‐polymer solar cells based on blends of the polymers poly(3‐hexylthiophene) (P3HT) and poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthiophen‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (F8TBT) is investigated. Annealing of completed devices is found to result in an increase in power conversion efficiency from 0.14 to 1.20%, while annealing of films prior to top electrode deposition increases device efficiency to only 0.19% due to a lowering of the open‐circuit voltage and short‐circuit current. By studying the dependence of photocurrent on intensity and effective applied bias, annealing is found to increase charge generation efficiency through an increase in the efficiency of the separation of bound electron‐hole pairs following charge transfer. However, unlike many other all‐polymer blends, this increase in charge separation efficiency is not only due to an increase in the degree of phase separation that assists in the spatial separation of electron‐hole pairs, but also due to an order of magnitude increase in the hole mobility of the P3HT phase. The increase in hole mobility with annealing is attributed to the ordering of P3HT chains evidenced by the red‐shifting of P3HT optical absorption in the blend. We also use X‐ray photoelectron spectroscopy (XPS) to study the influence of annealing protocol on film interface composition. Surprisingly both top and bottom electrode/blend interfaces are enriched with P3HT, with the blend/top electrode interface consisting of more than 95% P3HT for as‐spun films and films annealed without a top electrode. Films annealed following top electrode deposition, however, show an increase in F8TBT composition to ~15%. The implications of interfacial composition and the origin of open‐circuit voltage in these devices are also discussed.  相似文献   

13.
We report the use of molecular beam epitaxy to achieve p-type doping of CdTe grown on Si(211) substrates, by use of an arsenic cracker and post-growth annealing. A high hole density in CdTe is crucial for high efficiency II–VI-based solar cells. We measured the density of As in single-crystal CdTe by secondary ion mass spectroscopy; this showed that high As incorporation is achieved at low growth temperatures. Progressively higher incorporation was observed during low-temperature growth, presumably because of degradation of crystal quality with incorporation of As at such defect sites as dislocations and defect complexes. After As activation annealing under Hg overpressure, hole concentrations were obtained from Hall measurements. The highest doping level was ~2.3 × 1016 cm?3, and near-1016 cm?3 doping was readily reproduced. The activation efficiency was ~50%, but further optimization of the growth and annealing conditions is likely to improve this value.  相似文献   

14.
Ternary I‐III‐VI2 nanocrystals (NCs), such as CuInS2, are receiving attention as heavy‐metals‐free materials for solar cells, luminescent solar concentrators (LSCs), LEDs, and bio‐imaging. The origin of the optical properties of CuInS2 NCs are however not fully understood. A recent theoretical model suggests that their characteristic Stokes‐shifted and long‐lived luminescence arises from the structure of the valence band (VB) and predicts distinctive optical behaviours in defect‐free NCs: the quadratic dependence of the radiative decay rate and the Stokes shift on the NC radius. If confirmed, this would have crucial implications for LSCs as the solar spectral coverage ensured by low‐bandgap NCs would be accompanied by increased re‐absorption losses. Here, by studying stoichiometric CuInS2 NCs, it is revealed for the first time the spectroscopic signatures predicted for the free band‐edge exciton, thus supporting the VB‐structure model. At very low temperatures, the NCs also show dark‐state emission likely originating from enhanced electron‐hole spin interaction. The impact of the observed optical behaviours on LSCs is evaluated by Monte Carlo ray‐tracing simulations. Based on the emerging device design guidelines, optical‐grade large‐area (30×30 cm2) LSCs with optical power efficiency (OPE) as high as 6.8% are fabricated, corresponding to the highest value reported to date for large‐area devices.  相似文献   

15.
We hereby present an incorporation technique for inorganic nanocrystals (NCs) in organic solar cells (OSCs) for the improvement of power conversion efficiency (PCE). Ternary PbSSe NCs constitute stable conformations with regular poly(3-hexylthiophene):phenyl-C70 butyric acid methyl ester (P3HT:PCBM) organic composites under two heterojunction systems, and significant solar performance modification was obtained, depending on the incorporation type. Bilayer heterojunction (Bi-HJ) SCs, in which a pristine NC layer is sandwiched between the organic composite and cathode, showed significantly broadened photon-harvesting resulting from combination of both layers and energetic carrier transport as a result of reduced recombination losses. In contrast, bulk heterojunction (BHJ) SCs comprising combined composites of P3HT:PCBM:NCs in a single layer suffered from inefficient charge transport as a result of ubiquitous charge traps. Use of Bi-HJ cells with an NC layer of optimal thickness greatly enhanced the short-circuit current (JSC) to 10.54 mA cm?2 and a PCE of 3.12% was achieved; this is a 31% improvement over the conversion efficiency of purely organic cells without NCs. The separate PbSSe NC layer coupled well with the organic composite to provide a broad-range photon-harvesting ability and vertically efficient interfacial junctions for systematic charge transport; this greatly enhances the photovoltaic performances of the OSCs.  相似文献   

16.
A facile and safe ligand exchange method for readily synthesized CuInSe2 (CIS) and CuIn1‐xGaxSe2 (CIGS) nanocrystals (NCs) from oleylamine to 1‐ethyl‐5‐thiotetrazole, preserving the colloidal stability of the chalcopyrite structure, is presented. 1‐Ethyl‐5‐thiotetrazole as thermally degradable ligand is adapted for the first time for trigonal pyramidal CIS (18 nm), elongated CIS (9 nm) and CIGS NCs (6 nm). Exchanged NC solutions are processed onto gold electrodes yielding ordered thin films. These films are thermally annealed at 260 °C to completely remove 1‐ethyl‐5‐thiotetrazol leaving individual closely assembled NCs with virtually bare surfaces. The current–voltage characteristics of the NC solids are measured prior to ligand thermolysis in the dark and under illumination and after ligand thermolysis in the same manner. The conductivity of trigonal pyramidal CIS increases by four orders of magnitude (1.4 × 10?9 S cm?1 (dark) to 1.4 × 10?5 S cm?1 (illuminated)) for ligand‐free NC films. Elongated CIS NC films show a three orders of magnitude conductivity increase and CIGS NC films exhibit improved conductivity by two orders of magnitude. Conductivity enhancement thereby depends on the NC size accentuating the role of trap‐states and internal grain boundaries in ligand‐free NC solids for electrical transport. This approach for the first time offers the possibility to address chalcopyrite materials’ electrical properties in a virtually ligand‐free state.  相似文献   

17.
Spectral response of solar cells determines the output performance of the devices. In this work, a 20.0% efficient silicon (Si) nano/microstructures (N/M‐Strus) based solar cell with a standard solar wafer size of 156 × 156 mm2 (pseudo‐square) has been successfully fabricated, by employing the simultaneous stack SiO2/SiNx passivation for the front N/M‐Strus based n+‐emitter and the rear surface. The key to success lies in the excellent broadband spectral responses combining the improved short‐wavelength response of the stack SiO2/SiNx passivated Si N/M‐Strus based n+‐emitter with the extraordinary long‐wavelength response of the stack SiO2/SiNx passivated rear reflector. Benefiting from the broadband spectral response, the highest open‐circuit voltage (Voc) and short‐circuit current density (Jsc) reach up to 0.653 V and 39.0 mA cm?2, respectively. This high‐performance screen‐printed Si N/M‐Strus based solar cell has shown a very promising way to the commercial mass production of the Si based high‐efficient solar cells.  相似文献   

18.
This paper reports β‐lactoglobulin amyloid protein fibrils directed synthesis of Titanium Dioxide (TiO2) hybrid nanowires. Protein fibrils act as templates to generate closely packed TiO2 nanoparticles on the surface of the fibrils using titanium (IV) bis (ammonium lactato) dihydroxide (TiBALDH) as precursor, resulting in the TiO2–coated amyloid hybrid nanowires. These amyloid fibrils also exhibit complexation with a luminescent water‐soluble semiconductive polythiophene (P3HT). TiO2 nanowires behave as electron acceptor while, P3HT as electron donor. In this way, amyloid‐TiO2 hybrid nanowires can serve in heterojunction photovoltaic devices. To demonstrate this, a photovoltaic active layer is prepared by spin coating the blended mixture of polythiophene‐coated fibrils and amyloid‐TiO2 hybrid nanowires. The current–voltage characteristics of these photovoltaic devices exhibit excellent fill factor of 0.53, photovoltaic current density of 3.97 mA·cm?2 and power conversion efficiency of 0.72%, highlighting a possible future role for amyloid‐based templates in donor–acceptor devices, organic electronics and hybrid solar cells.  相似文献   

19.
A model to estimate the short‐circuit current of a solar cell under artificial light from the short‐circuit current of the same solar cell under AM1.5 1 kW/m2 is described. The results may help designers of solar‐powered portable equipment and consumer products working indoors or under a mixture of artificial and sunlight. It is concluded that the ratio of the short‐circuit currents of the same solar cell generated under fluorescent light of 1 lux illuminance divided by the short‐circuit current generated under standard 1 Sun AM1.5 conditions is around 3 × 10−6 for typical crystalline silicon and CIS solar cells. This value is one order of magnitude greater if the light source considered is an incandescent lamp. In the case of amorphous silicon solar cells the value of the ratio is close to 8 × 10−6 either for fluorescent or incandescent lamps. CdTe solar cells are also considered, and this factor is about 4 × 10−6 under fluorescent light, and four times bigger when an incandescent lamp is used. Some measurements performed validate the figures obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Monolithic tandem cells involving a top cell with Si nanocrystals embedded in SiC (Si NC/SiC) and a c‐Si bottom cell have been prepared. Scanning electron microscopy shows that the intended cell architecture is achieved and that it survives the 1100 °C anneal required to form Si NCs. The cells exhibit mean open‐circuit voltages Voc of 900–950 mV, demonstrating tandem cell functionality, with ≤580 mV arising from the c‐Si bottom cell and ≥320 mV arising from the Si NC/SiC top cell. The cells are successfully connected using a SiC/Si tunnelling recombination junction that results in very little voltage loss. The short‐circuit current densities jsc are, at 0.8–0.9 mAcm−2, rather low and found to be limited by current collection in the top cell. However, equivalent circuit simulations demonstrate that in current‐mismatched tandem cells such as the ones studied here, higher jsc, when accompanied by decreased Voc, can arise from shunts or breakdown in the limiting cell rather than improved current collection from the limiting cell. This indicates that Voc is a better optimisation parameter than jsc for tandem cells where the limiting cell exhibits poor junction characteristics. The high‐temperature‐stable cell architecture developed in this work, coupled with simulations highlighting potential pitfalls in tandem cell analysis, provides a suitable route for optimisation of Si NC layers for photovoltaics on a tandem cell device level. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号