首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugated polymers are an important class of materials for organic electronics applications. There, the relative alignment of the electronic energy levels at ubiquitous organic/(in)organic interfaces is known to crucially impact device performance. On the prototypical example of poly(3‐hexylthiophene) and a fluorinated derivative, the energies of the ionization and affinity levels of π‐conjugated polymers are revealed to critically depend on the orientation of the polymer backbones with respect to such interfaces. Based on extensive first‐principles calculations, an intuitive electrostatic model is developed that quantitatively traces these observations back to intrinsic intramolecular surface dipoles arising from the π‐electron system and intramolecular polar bonds. The results shed new light on the working principles of organic electronic devices and suggest novel strategies for materials design.  相似文献   

2.
Alternating conjugated polymers of ethylenedioxythiophene and fluorene are prepared using three different synthetic methods to investigate the effects of these synthetic methods on the purity, field‐effect transistor (FET) performance, and organic photovoltaic (OPV) performance of the polymer. In this study, microwave‐assisted direct arylation polycondensation is used to obtain a high‐purity, high‐molecular‐weight (147 kDa) polymer. This pure polymer exhibits a high FET hole mobility of 1.2 × 10?3 cm2 V?1 s?1 and high OPV performance with a power conversion efficiency of 4%, even though the polymer forms an amorphous film, which absorbs in a limited region of the spectrum.  相似文献   

3.
Recent developments in conjugated‐polymer‐based photovoltaic elements are reviewed. The photophysics of such photoactive devices is based on the photo‐induced charge transfer from donor‐type semiconducting conjugated polymers to acceptor‐type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C60. This photo‐induced charge transfer is reversible, ultrafast (within 100 fs) with a quantum efficiency approaching unity, and the charge‐separated state is metastable (up to milliseconds at 80 K). Being similar to the first steps in natural photosynthesis, this photo‐induced electron transfer leads to a number of potentially interesting applications, which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are presented and their potential in terrestrial solar energy conversion discussed. Recent progress in the realization of improved photovoltaic elements with 3 % power conversion efficiency is reported.  相似文献   

4.
Micro‐ and nanostructuring of conjugated polymers are of critical importance in the fabrication of molecular electronic devices as well as photonic and bandgap materials. The present report delineates the single‐step self‐organization of highly ordered structures of functionalized poly(p‐phenylene)s without the aid of either a controlled environment or expensive fabrication methodologies. Microporous films of these polymers, with a honeycomb pattern, were prepared by direct spreading of the dilute polymer solution on various substrates, such as glass, quartz, silicon wafer, indium tin oxide, gold‐coated mica, and water, under ambient conditions. The polymeric film obtained from C12PPPOH comprises highly periodic, defect‐free structures with blue‐light‐emitting properties. It is expected that such microstructured, conjugated polymeric films will have interesting applications in photonic and optoelectronic devices. The ability of the polymer to template the facile micropatterning of nanomaterials gives rise to hybrid films with very good spatial dispersion of the carbon nanotubes.  相似文献   

5.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

6.
We report a study of the effects of polymer optoelectronic properties on the performance of photovoltaic devices consisting of nanocrystalline TiO2 and a conjugated polymer. Three different poly(2‐methoxy‐5‐(2′‐ethylhexoxy)‐1,4‐phenylenevinylene) (MEH‐PPV)‐based polymers and a fluorene–bithiophene copolymer are compared. We use photoluminescence quenching, time‐of‐flight mobility measurements, and optical spectroscopy to characterize the exciton‐transport, charge‐transport, and light‐harvesting properties, respectively, of the polymers, and correlate these material properties with photovoltaic‐device performance. We find that photocurrent is primarily limited by the photogeneration rate and by the quality of the interfaces, rather than by hole transport in the polymer. We have also studied the photovoltaic performance of these TiO2/polymer devices as a function of the fabrication route and device design. Including a dip‐coating step before spin‐coating the polymer leads to excellent polymer penetration into highly structured TiO2 networks, as was confirmed through transient optical measurements of the photoinduced charge‐transfer yield and recombination kinetics. Device performance is further improved for all material combinations studied, by introducing a layer of poly(ethylene dioxythiophene) (PEDOT) doped with poly(styrene sulfonic acid) (PSS) under the top contact. Optimized devices incorporating the additional dip‐coated and PEDOT:PSS layers produced a short‐circuit current density of about 1 mA cm–2, a fill factor of 0.50, and an open‐circuit voltage of 0.86 V under simulated AM 1.5 illumination (100 mW cm–2, 1 sun). The corresponding power conversion efficiency under 1 sun was ≥ 0.4 %.  相似文献   

7.
All‐conjugated block copolymers bring together hole‐ and electron‐conductive polymers and can be used as the active layer of solution‐processed photovoltaic devices, but it remains unclear how molecular structure, morphology, and electronic properties influence performance. Here, the role of the chemical linker is investigated through analysis of two donor–linker–acceptor block copolymers that differ in the chemistry of the linking group. Device studies show that power conversion efficiencies differ by a factor of 40 between the two polymers, and ultrafast transient absorption measurements reveal charge separation only in block copolymers that contain a wide bandgap monomer at the donor–acceptor interface. Optical measurements reveal the formation of a low‐energy excited state when donor and acceptor blocks are directly linked without this wide bandgap monomer. For both samples studied, it is found that the rate of charge recombination in these systems is faster than in poly­mer–polymer and polymer–fullerene blends. This work demonstrates that the linking group chemistry influences charge separation in all‐conjugated block copolymer systems, and further improvement of photovoltaic performance may be possible through optimization of the linking group. These results also suggest that all‐conjugated block copolymers can be used as model systems for the donor–acceptor interface in bulk heterojunction blends.  相似文献   

8.
The fabrication of functional multilayered conjugated‐polymer structures with well‐defined organic‐organic interfaces for optoelectronic‐device applications is constrained by the common solubility of many polymers in most organic solvents. Here, we report a simple, low‐cost, large‐area transfer‐printing technique for the deposition and patterning of conjugated‐polymer thin films. This method utilises a planar poly(dimethylsiloxane) (PDMS) stamp, along with a water‐soluble sacrificial layer, to pick up an organic thin film (~20 nm to 1 µm) from a substrate and subsequently deliver this film to a target substrate. We demonstrate the versatility of this transfer‐printing technique and its applicability to optoelectronic devices by fabricating bilayer structures of poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene))/poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (TFB/F8BT) and poly(3‐hexylthiophene)/methanofullerene([6,6]‐phenyl C61 butyric acid methyl ester) (P3HT/PCBM), and incorporating them into light‐emitting diodes (LEDs) and photovoltaic (PV) cells, respectively. For both types of device, bilayer devices fabricated with this transfer‐printing technique show equal, if not superior, performance to either blend devices or bilayer devices fabricated by other techniques. This indicates well‐controlled organic‐organic interfaces achieved by the transfer‐printing technique. Furthermore, this transfer‐printing technique allows us to study the nature of the excited states and the transport of charge carriers across well‐defined organic interfaces, which are of great importance to organic electronics.  相似文献   

9.
New electroactive and photoactive conjugated copolymers consisting of alternating 2,7‐carbazole and oligothiophene moieties linked by vinylene groups have been developed. Different oligothiophene units have been introduced to study the relationship between the polymer structure and the electronic properties. The resulting copolymers are characterized by UV‐vis spectroscopy, size‐exclusion chromatography, and thermal and electrochemical analyses. Bulk heterojunction photovoltaic cells from different copolymers and a soluble fullerene derivative, [6,6]‐phenyl‐C61 butyric acid methyl ester, have been fabricated, and promising preliminary results are obtained. For instance, non‐optimized devices using poly(N‐(4‐octyloxyphenyl)‐2,7‐carbazolenevinylene‐alt‐3″,4″‐dihexyl‐2,2′;5′,2″;5″,2″′;5″′,2″″‐quinquethiophenevinylene 1″,1″‐dioxide) as an absorbing and hole‐carrier semiconductor exhibit power conversion efficiency up to 0.8 % under air mass (AM) 1.5 illumination. These features make 2,7‐carbazolenevinylene‐based and related polymers attractive candidates for solar‐cell applications.  相似文献   

10.
Semiconducting donor–acceptor (D–A) polymers have attracted considerable attention toward the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications. Here, polydiketopyrrolopyrrole (PDPP)‐based D–A polymers with varied alkyl side‐chain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (Tg) with increasing side‐chain length, which is further verified through coarse‐grained molecular dynamics simulations. Informed from experimental results, a mass‐per‐flexible bond model is developed to capture such observation through a linear correlation between Tg and polymer chain flexibility. Using this model, a wide range of backbone Tg over 80 °C and elastic modulus over 400 MPa can be predicted for PDPP‐based polymers. This study highlights the important role of side‐chain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predict Tg and elastic modulus of future new D–A polymers.  相似文献   

11.
We report the design and synthesis of three alcohol‐soluble neutral conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene] (PF‐OH), poly[9,9‐bis(2‐(2‐(2‐diethanol‐aminoethoxy)ethoxy)ethyl)fluorene‐alt‐4,4′‐phenylether] (PFPE‐OH) and poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene‐alt‐benzothiadizole] (PFBT‐OH) with different conjugation length and electron affinity as highly efficient electron injecting and transporting materials for polymer light‐emitting diodes (PLEDs). The unique solubility of these polymers in polar solvents renders them as good candidates for multilayer solution processed PLEDs. Both the fluorescent and phosphorescent PLEDs based on these polymers as electron injecting/transporting layer (ETL) were fabricated. It is interesting to find that electron‐deficient polymer (PFBT‐OH) shows very poor electron‐injecting ability compared to polymers with electron‐rich main chain (PF‐OH and PFPE‐OH). This phenomenon is quite different from that obtained from conventional electron‐injecting materials. Moreover, when these polymers were used in the phosphorescent PLEDs, the performance of the devices is highly dependent on the processing conditions of these polymers. The devices with ETL processed from water/methanol mixed solvent showed much better device performance than the devices processed with methanol as solvent. It was found that the erosion of the phosphorescent emission layer could be greatly suppressed by using water/methanol mixed solvent for processing the polymer ETL. The electronic properties of the ETL could also be influenced by the processing conditions. This offers a new avenue to improve the performance of phosphorescent PLEDs through manipulating the processing conditions of these conjugated polymer ETLs.  相似文献   

12.
One way to improve power conversion efficiency (PCE) of polymer based bulk‐heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis‐adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3‐hexyl thiophene) (P3HT). However, for the most promising low band‐gap polymer (LBP) system, replacing PCBM with ICBA results in poor short‐circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as‐cast LBP/bis‐fullerene BHJ photovoltaics is attempted by adding a co‐solvent to the polymer/fullerene solution prior to film deposition. Varying the solubility of polymer and fullerene in the co‐solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as‐cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co‐solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co‐solvent is selective to ICBA. The resultant morphology improves PCE by up to 246%. A quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.  相似文献   

13.
A multi‐ring, ladder‐type low band‐gap polymer (PIDTCPDT‐DFBT) is developed to show enhanced light harvesting, charge transport, and photovoltaic performance. It possesses excellent planarity and enhanced effective conjugation length compared to the previously reported fused‐ring polymers. In order to understand the effect of extended fused‐ring on the electronic and optical properties of this polymer, a partially fused polymer PIDTT‐T‐DFBT is also synthesized for comparison. The fully rigidified polymer provides lower reorganizational energy, resulting in one order higher hole mobility than the reference polymer. The device made from PIDTCPDT‐DFBT also shows a quite promising power conversion efficiency of 6.46%. Its short‐circuit current (14.59 mA cm?2) is also among the highest reported for ladder‐type polymers. These results show that extending conjugation length in fused‐ring ladder polymers is an effective way to reduce band‐gap and improve charge transport for efficient photovoltaic devices.  相似文献   

14.
A strong modification of the electronic properties of solution‐processable conjugated polythiophenes by self‐assembled silane molecules is reported. Upon bulk doping with hydrolized fluoroalkyl trichlorosilane, the electrical conductivity of ultrathin polythiophene films increases by up to six orders of magnitude, reaching record values for polythiophenes: (1.1 ± 0.1) × 103 S cm?1 for poly(2,5‐bis(3‐tetradecylthiophen ‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT) and 50 ± 20 S cm?1 for poly(3‐hexyl)thiophene (P3HT). Interband optical absorption of the polymers in the doped state is drastically reduced, making these highly conductive films transparent in the visible range. The dopants within the porous polymer matrix are partially crosslinked via a silane self‐polymerization mechanism that makes the samples very stable in vacuum and nonpolar environments. The mechanism of SAM‐induced conductivity is believed to be based on protonic doping by the free silanol groups available within the partially crosslinked SAM network incorporated in the polythiophene structure. The SAM‐doped polythiophenes exhibit an intrinsic sensing effect: a drastic and reversible change in conductivity in response to ambient polar molecules, which is believed to be due to the interaction of the silanol groups with polar analytes. The reported electronic effects point to a new attractive route for doping conjugated polymers with potential applications in transparent conductors and molecular sensors.  相似文献   

15.
Semiconducting single‐walled carbon nanotubes (sc‐SWCNTs) enriched by a conjugated polymer extraction process have been actively studied for various applications in both electronics and optoelectronics. Although the resulting tube samples usually have high sc‐purity and concentration, SWCNT networks from such dispersions typically contain residual conjugated polymer that may degrade device performance and its removal remains a challenge while maintaining uniform, dense SWCNT thin film networks. In this study, a novel polymer–SWCNT combination based on an alternating bisfuran‐s‐tetrazine and benzo[1,2‐b:4,5‐b′]dithiophene copolymer abbreviated as PBDTFTz is proposed. This polymer decomposes at >250 °C or under UV irradiation. In situ transistor characterization under laser irradiation confirms the polymer decomposition. The study of the tube network in the transistor channel at various channel lengths reveals significantly reduced contact resistance attributed to removal of the wrapping PBDTFTz polymer. In ammonia sensing experiments, sc‐SWCNT networks demonstrate rapid and reversible responses, while the unwrapped nanotube networks prove superior in terms of signal to noise ratio and a detection limit of 2.5 ppb is calculated, almost four times better than polymer wrapped nanotubes.  相似文献   

16.
A series of conjugated polymers using naphtho[1,2‐c:5,6‐c]bis[1,2,5]thiadiazole and benzodithiophene alternating backbone is synthesized to investigate the effect of side chain substitution on conjugated donor–acceptor polymer on electronic, morphological, and photovoltaic properties. It is found that light absorption and frontier energy levels of the resultant polymers are strongly affected by the side chains. The thin film morphology, crystal structure, crystallinity, and orientation also depend on the side chains; the side chain type affects more in the π–π stacking direction, while the side chain density plays a significant role in the lamellar packing direction. The thickness of the active layer also influences the performance of the solar cells with some materials showing enhanced performance with thicker active layers. The best solar cell device in this study has power conversion efficiencies of 8.14%, among the highest in materials of similar structure.  相似文献   

17.
Thiophene‐containing polymers blended with fullerenes have recently demonstrated impressively high photovoltaic efficiencies. One drawback of this class of polymers is their relatively low ionization potential, which leads to rather low open‐circuit voltages. Polyterthiophenes belong to a material class that has recently captured a large amount of interest for polymer electronic applications because of its excellent transport properties. Because of the slightly lower ionization potential, this material class appears more attractive for photovoltaic applications than polythiophenes. In this work, the photovoltaic performance of bulk heterojunction solar cells from polyterthiophene/fullerene composites is discussed and compared to the polymer/fullerene blend morphology.  相似文献   

18.
19.
The synthesis, unexpected efficient photoluminescence, and reversible electrochemical p‐ and n‐doping of new conjugated thienylene vinylene materials functionalized with alkylsulfanyl substituents poly(trithienylene vinylene) (PTTV) and poly(dithienylvinyl‐co‐benzothiadiazole) (PDTVB) along with dithienylvinylene‐based oligomers is reported. The materials are studied by thermal and X‐ray diffraction analysis, optical spectroscopy, cyclic voltammetry, and spectroelectrochemistry. Organic field‐effect transistors (OFETs) are fabricated with PTTV and PDTVB. The polymers, prepared by Stille polycondensation, exhibit good thermal stability and a photoluminescent quantum yield in the range 34%–68%. Low bandgaps (1.5–1.8 eV), estimated by optical and electrochemical measurements along with high stability of both redox states, suggest that these structures are promising materials for photovoltaic applications. OFETs fabricated with PDTVB reveal a hole mobility of 7 × 10?3 cm2 V?1 s?1 with on/off ratio 105, which are comparatively high values for completely amorphous polymer semiconductors.  相似文献   

20.
Thermally irreversible, photochromic dithienylethene‐alt‐dihexyloxyphenylenevinylene and dithienylethene‐alt‐didodecyloxyphenylenevinylene copolymers have been synthesized via the Horner and Wittig reactions, respectively. Both polymers are photochromic in solution and in the solid state. Electronic spectra show that the materials are highly conjugated in both states and the large π‐delocalization along the main chain when the diarylethene moiety is in the closed form gives a decrease of the ring‐opening quantum yield. The increase in molecular weight relative to other backbone dithienylethene polymers allows the preparation of good quality films without the use of supporting polymer matrices; this is an important achievement for the technological application of these photochromic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号