首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This work investigates the composition and morphology of films of poly(3‐hexylthiophene) (P3HT), polyfluorene co‐polymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (F8TBT) and blends thereof that are used in efficient all‐polymer solar cells. Ultraviolet photoemission spectroscopy (UPS) and X‐ray photoemission spectroscopy (XPS) studies on thin polymer and blend films on ZnO substrates reveal the existence of a 1–2 nm thick P3HT layer at the top surface of the blend films. XPS depth profiling studies reveal a density wave (λ ≈ 70 nm) originating from the air interface. As no preferential accumulation is observed at the bottom interface with ZnO, the composition at this interface is consistent with the original composition of the blend solution prior to spin‐coating. The morphology of this buried interface was studied by means of atomic force microscopy (AFM) and revealed that upon annealing the average domain size increases slightly (from 27 nm to 40 nm). It is observed that the photovoltaic performance of such inverted hybrid device improves upon annealing, however we believe this to mostly be a result of increased crystallinity in the P3HT domains leading to improved charge transport in the device, rather than changes in the blend phase separation.  相似文献   

2.
The in situ morphology change upon thermal annealing in bulk heterojunction blend films of regioregular poly(3‐hexylthiophene) (P3HT) and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C61 (PCBM) is measured by a grazing incidence X‐ray diffraction (GIXD) method using a synchrotron radiation source. The results show that the film morphology—including the size and population of P3HT crystallites—abruptly changes at 140 °C between 5 and 30 min and is then stable up to 120 min. This trend is almost in good agreement with the performance change of polymer solar cells fabricated under the same conditions. The certain morphology change after 5 min annealing at 140 °C is assigned to the on‐going thermal transition of P3HT molecules in the presence of PCBM transition. Field‐emission scanning electron microscopy measurements show that the crack‐like surface of blend films becomes smaller after a very short annealing time, but does not change further with increasing annealing time. These findings indicate that the stability of P3HT:PCBM solar cells cannot be secured by short‐time annealing owing to the unsettled morphology, even though the resulting efficiency is high.  相似文献   

3.
Changes in the nanoscale morphologies of the blend films of poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), for high‐performance bulk‐heterojunction (BHJ) solar cells, are compared and investigated for two annealing treatments with different morphology evolution time scales, having special consideration for the diffusion and aggregation of PCBM molecules. An annealing condition with relatively fast diffusion and aggregation of the PCBM molecules during P3HT crystallization results in poor BHJ morphology because of prevention of the formation of the more elongated P3HT crystals. However, an annealing condition, accelerating PCBM diffusion after the formation of a well‐ordered morphology, results in a relatively stable morphology with less destruction of crystalline P3HT. Based on these results, an effective strategy for determining an optimized annealing treatment is suggested that considers the effect of relative kinetics on the crystallization of the components for a blend film with a new BHJ materials pair, upon which BHJ solar cells are based.  相似文献   

4.
The challenges of experimentally probing the physical and electronic structures of the highly intermixed organic semiconductor blends that comprise active layers in high‐performance organic photovoltaic (OPV) cells ultimately limit the fundamental understanding of the device performance. We use Fourier‐transform IR (FTIR)‐absorption spectroscopy to quantitatively determine the interfacial electric field in blended poly(3‐hexylthiophene) (P3HT):phenyl‐ C61‐butyric acid methyl ester (PCBM) thin films. The interfacial electric field is ≈0.2 V nm?1 in the as‐spun film and blends annealing at temperatures as high as 150 °C, which is the optimal annealing temperature in terms of OPV performance. The field decreases to a negligible value upon further annealing to 170 °C, at which temperature PCBM changes from amorphous to crystalline and the open‐circuit voltage of the solar cell decreases from 0.62 to 0.4 V. In addition, our measurements also allow determination of the absolute degree of crystallinity within the acceptor material. The roles of interfacial field and local crystallinity in OPV device performance are discussed.  相似文献   

5.
The morphology with the interpenetrating network and optimized vertical phase separation plays a key role in determining the charge transport and collection in polymer:nonfullerene small molecular acceptors (SMAs) solar cells. However, the crystallization of polymer and SMAs usually occurs simultaneously during film‐forming, thus interfering with the crystallization process of each other, leading to amorphous film with undesirable lateral and vertical phase separation. The poly(3‐hexylthiophene) (P3HT):O‐IDTBR blend is selected as a model system, and controlling film‐forming kinetics to solve these problems is proposed. Herein, a cosolvent 1,2,4‐triclorobenzene (TCB) with selective solubility and a high boiling point is added to the solution, leading to prior crystallization of P3HT and extended film‐forming duration. As a result, the crystallinity of both components is enhanced significantly. Meanwhile, the prior crystallization of P3HT induces solid–liquid phase separation, hence rationalizing the formation of the nano‐interpenetrating network. Moreover, the surface energy drives O‐IDTBR to enrich near the cathode and P3HT to migrate to the anode. Consequently, a highly crystalline nano‐interpenetrating network with proper vertical phase separation is obtained. The optimal morphology improves charge transport and suppresses bimolecular recombination, boosting the power conversion efficiency from 4.45% to 7.18%, which is the highest performance in P3HT‐based binary nonfullerene solar cells.  相似文献   

6.
The impact of controlled solvent vapor exposure on the morphology, structural evolution, and function of solvent‐processed poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bilayers is presented. Grazing incident wide angle X‐ray scattering (GIWAXS) shows that the crystallization of P3HT increases with solvent exposure, while neutron reflectivity shows that P3HT simultaneously diffuses into PCBM, indicating that an initial bilayer structure evolves into a bulk heterojunction structure. Small angle neutron scattering (SANS) shows the agglomeration of PCBM and the formation of a PCBM pure phase when solvent annealing for 90 min. The structural evolution can be described as occurring in two stages: the first stage combines the enhanced crystallization of P3HT and diffusion of PCBM into P3HT, while the second stage entails the agglomeration of PCBM and formation of a PCBM pure phase. The phase separation of PCBM from P3HT is not driven by P3HT crystallinity, but is due to the concentration of PCBM exceeding the miscibility limit of PCBM in P3HT. Correlation of the morphology to photovoltaic activity shows that device performance significantly improves with solvent annealing for 90 min, indicating that both sufficient P3HT crystallization and formation of a PCBM pure phase are crucial in the optimization of the morphology of the active layer.  相似文献   

7.
A fundamental understanding of the relationship between the bulk morphology and device performance is required for the further development of bulk heterojunction organic solar cells. Here, non‐optimized (chloroform cast) and nearly optimized (solvent‐annealed o‐dichlorobenzene cast) P3HT:PCBM blend films treated over a range of annealing temperatures are studied via optical and photovoltaic device measurements. Parameters related to the P3HT aggregate morphology in the blend are obtained through a recently established analytical model developed by F. C. Spano for the absorption of weakly interacting H‐aggregates. Thermally induced changes are related to the glass transition range of the blend. In the chloroform prepared devices, the improvement in device efficiency upon annealing within the glass transition range can be attributed to the growth of P3HT aggregates, an overall increase in the percentage of chain crystallinity, and a concurrent increase in the hole mobilities. Films treated above the glass transition range show an increase in efficiency and fill factor not only associated with the change in chain crystallinity, but also with a decrease in the energetic disorder. On the other hand, the properties of the P3HT phase in the solvent‐annealed o‐dichlorobenzene cast blends are almost indistinguishable from those of the corresponding pristine P3HT layer and are only weakly affected by thermal annealing. Apparently, slow drying of the blend allows the P3HT chains to crystallize into large domains with low degrees of intra‐ and interchain disorder. This morphology appears to be most favorable for the efficient generation and extraction of charges.  相似文献   

8.
The self‐organization of the polymer in solar cells based on regioregular poly(3‐hexylthiophene) (RR‐P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied systematically as a function of the spin‐coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin‐coating process. These blend films are characterized by photoluminescence spectroscopy, UV‐vis absorption spectroscopy, atomic force microscopy, and grazing incidence X‐ray diffraction (GIXRD) measurements. The results indicate that the π‐conjugated structure of RR‐P3HT in the films is optimally developed when ta is greater than 1 min (ts ~ 50 s). For t s < 50 s, both the short‐circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π‐conjugated structure of RR‐P3HT to 1.2 % for a less‐ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon‐to‐electron conversion efficiency spectrum of the less‐ordered solar cell shows a clear loss in both the overall magnitude and the long‐wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open‐circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.  相似文献   

9.
Studies on the influence of four different solvents on the morphology and photovoltaic performance of bulk‐heterojunction films made of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) via spin‐coating for photovoltaic applications are reported. Solvent‐dependent PCBM cluster formation and P3HT crystallization during thermal annealing are investigated with optical microscopy and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and are found to be insufficient to explain the differences in device performance. A combination of atomic force microscopy (AFM), X‐ray reflectivity (XRR), and grazing‐incidence small‐angle X‐ray scattering (GISAXS) investigations results in detailed knowledge of the inner film morphology of P3HT:PCBM films. Vertical and lateral phase separation occurs during spin‐coating and annealing, depending on the solvent used. The findings are summarized in schematics and compared with the IV characteristics. The main influence on the photovoltaic performance arises from the vertical material composition and the existence of lateral phase separation fitting to the exciton diffusion length. Absorption and photoluminescence measurements complement the structural analysis.  相似文献   

10.
Processing solvent additives in polymer:fullerene bulk heterojunction systems are known as a promising method to enhance photovoltaic performance. It is generally agreed that solvent additives enable polymers to have a high degree of molecular order which increases the device performance. However, the understanding of the efficiency enhancement is not complete. There is a lack of insight regarding the quantitative determination of the molecular miscibility between polymer and fullerene as well as the inner morphology changes induced by the additives. In this work, understanding of the influence of the solvent additive 1,8‐octanedithiol (ODT) is provided on the classic system poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PCBM) films. The impact on polymer crystallinity, surface structure, inner morphology, and quantitative molecular miscibility of P3HT and PCBM is studied as a function of ODT volume concentration. The crystallinity is probed with absorption spectroscopy and grazing incidence wide‐angle X‐ray scattering. The morphology and miscibility are characterized via atomic force microscopy and time‐of‐flight grazing incidence small angle neutron scattering. Besides an increased crystallinity and prominent phase separation, ODT increases the solubility of PCBM in P3HT and reduces the size of amorphous P3HT domains. Moreover, solvent processing with a high ODT concentration alters the vertical material composition of the active layer.  相似文献   

11.
Grazing incidence X‐ray scattering (GIXS) is used to characterize the morphology of poly(3‐hexylthiophene) (P3HT)–phenyl‐C61‐butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom‐built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well‐oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer–fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high‐performance organic solar cell devices.  相似文献   

12.
A high‐resolution near‐field spectroscopic mapping technique is successfully applied to investigate the influence of thermal annealing on the morphology of a poly(3‐hexylthiophene) and [6,6]‐penyl‐C61 butyric acid methyl ester (P3HT:PCBM) blend film. Based on the simultaneously recorded morphological and spectroscopic information, the interplay among the blend film morphology, the local P3HT:PCBM molecular distribution, and the P3HT photoluminescence (PL) quenching efficiency are systematically discussed. The PL and Raman signals of the electron donor (P3HT) and acceptor (PCBM) are probed at an optical resolution of approximately 10 nm, which allows the chemical nature of the different domains to be identified directly. In addition, the local PL quenching efficiency, which is related to the electron transfer from P3HT to PCBM, is quantitatively revealed. From these experimental results, it is proposed that high‐resolution near‐field spectroscopic imaging is capable of mapping the local chemical composition and photophysics of the P3HT:PCBM blends on a scale of a few nanometers.  相似文献   

13.
Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3‐hexylthiophene) with the two polyfluorene copolymers poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2′′‐diyl) (F8TBT) and poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100 °C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140 °C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Grazing‐incidence small‐angle X‐ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140 °C‐annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as‐spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200 °C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize.  相似文献   

14.
Poly(3‐hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self‐assemble via π–π stacking of its backbone, leading to an assembly and growth of P3HT fibrils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin‐coating process from various solvents. The development of organogel formation is detected by in situ static light scattering, which measures both the thinning rate by reflectance and structural development in the film via off‐specular scattering during film formation. Optical microscopy and thermal annealing experiments provide ex situ confirmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel‐onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density‐of‐states measured by impedance spectroscopy.  相似文献   

15.
A method is presented to manipulate the final morphology of roll-to-roll slot-die coated poly(3-hexylthiophene) (P3HT) by optically exciting the p-type polymer in solution while coating. These results provide a comprehensive picture of the entire knowledge chain, from demonstrating how to apply the authors’ method to a fundamental understanding of the changes in morphology and physical properties induced by exciting P3HT while coating. By combining results from density functional theory and molecular dynamics simulations with a variety of X-ray experiments, absorption spectroscopy, and THz spectroscopy, the relationship between morphology and physical properties of the thin film is demonstrated. Specifically, in P3HT films excited with light during deposition, changes in crystallinity and texture with more face-on orientation and increased out-of-plane charge mobility are observed.  相似文献   

16.
Regioregular poly(3‐hexyl thiophene) (RR P3HT) is drop‐cast to fabricate field‐effect transistor (FET) devices from different solvents with different boiling points and solubilities for RR P3HT, such as methylene chloride, toluene, tetrahydrofuran, and chloroform. A Petri dish is used to cover the solution, and it takes less than 30 min for the solvents to evaporate at room temperature. The mesoscale crystalline morphology of RR P3HT thin films can be manipulated from well‐dispersed nanofibrils to well‐developed spherulites by changing solution processing conditions. The morphological correlation with the charge‐carrier mobility in RR P3HT thin‐film transistor (TFT) devices is investigated. The TFT devices show charge‐carrier mobilities in the range of 10–4 ~ 10–2 cm2 V–1 s–1 depending on the solvent used, although grazing‐incidence X‐ray diffraction (GIXD) reveals that all films develop the same π–π‐stacking orientation, where the <100>‐axis is normal to the polymer films. By combining results from atomic force microscopy (AFM) and GIXD, it is found that the morphological connectivity of crystalline nanofibrils and the <100>‐axis orientation distribution of the π–π‐stacking plane with respect to the film normal play important roles on the charge‐carrier mobility of RR P3HT for TFT applications.  相似文献   

17.
The performance of polymer solar cells (PSC) strongly depends on the 3D morphological organization of the donor and acceptor compounds within the bulk heterojunction active layer. The technique of electron tomography is a powerful tool for studying 3D morphology of the layers composed of poly(3‐hexylthiophene) (P3HT) and a fullerene derivative ([6,6]‐phenyl‐C61‐butyric acid methyl ester; PCBM), especially to quantify the amount and distribution of fibrillar P3HT nanocrystals throughout the volume of the active layer. In this study, electron tomography is used to characterize P3HT/PCBM layers with different blend compositions, both before and after thermal annealing. The power conversion efficiency of the corresponding PSCs is strongly dependent on the overall crystallinity of P3HT and the way P3HT crystals are distributed throughout the thickness of the active layer.  相似文献   

18.
The properties of molecularly doped films of conjugated polymers are explored as the crystallinity of the polymer is systematically varied. Solution sequential processing (SqP) was used to introduce 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) into poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) while preserving the pristine polymer's degree of crystallinity. X‐ray data suggest that F4TCNQ anions reside primarily in the amorphous regions of the film as well as in the P3HT lamellae between the side chains, but do not π‐stack within the polymer crystallites. Optical spectroscopy shows that the polaron absorption redshifts with increasing polymer crystallinity and increases in cross section. Theoretical modeling suggests that the polaron spectrum is inhomogeneously broadened by the presence of the anions, which reside on average 6–8 Å from the polymer backbone. Electrical measurements show that the conductivity of P3HT films doped by F4TCNQ via SqP can be improved by increasing the polymer crystallinity. AC magnetic field Hall measurements show that the increased conductivity results from improved mobility of the carriers with increasing crystallinity, reaching over 0.1 cm2 V?1 s?1 in the most crystalline P3HT samples. Temperature‐dependent conductivity measurements show that polaron mobility in SqP‐doped P3HT is still dominated by hopping transport, but that more crystalline samples are on the edge of a transition to diffusive transport at room temperature.  相似文献   

19.
Organic field-effect transistors (OFETs) based on p-channel polymer semiconductors such as poly(3-hexyl)thiophene (P3HT) and 30-diketopyrrolopyrrole-selenophene vinylene selenophene (30-DPP-SVS) were fabricated using a microwave (MW) irradiation process for thermal annealing. The influence of MW annealing was investigated based on microstructural characterizations such as X-ray diffraction (XRD) and atomic force microscopy (AFM). MW annealing not only shortened the annealing time, but also produced enhanced device performance including higher on/off ratio, lower threshold voltage, and higher field-effect mobility in comparison with the traditional annealing method. These microstructural analyses revealed that annealing by MW irradiation enhances the crystallinity and molecular orientation in the polymer thin films in a short time, thereby improving the electrical performance effectively. Our results suggest that MW-assisted annealing is a simple and viable method for enhancing OFET performance.  相似文献   

20.
This study addresses two key issues, stability and efficiency, of polymer solar cells based on blended poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) by demonstrating a film‐forming process that involves low‐temperature drying (?5 °C) and subsequent annealing of the active layer. The low‐temperature process achieves 4.70% power conversion efficiency (PCE) and ~1250 h storage half‐life at 65 °C, which are significant improvements over the 3.39% PCE and ~143 h half‐life of the regular room‐temperature process. The improvements are attributed to the enhanced nucleation of P3HT crystallites as well as the minimized separation of the P3HT and PCBM phases at the low drying temperature, which upon post‐drying annealing results in a morphology consisting of small PCBM‐rich domains interspersed within a densely interconnected P3HT crystal network. This morphology provides ample bulk‐heterojunction area for charge generation while allowing for facile charge transport; moreover, the P3HT crystal network serves as an immobile frame at heating temperatures less than the melting point (Tm) of P3HT, thus preventing PCBM/P3HT phase separation and the corresponding device degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号