首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The charge generation and separation process in transition metal oxide (TMO)‐based interconnectors for tandem organic light‐emitting diodes (OLEDs) is explored using data on electrical and spectral emission properties, interface energetics, and capacitance characteristics. The TMO‐based interconnector is composed of MoO3 and cesium azide (CsN3)‐doped 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) layers, where CsN3 is employed to replace the reactive metals as an n‐dopant due to its air stability and low deposition temperature. Experimental evidences identify that spontaneous electron transfer occurs in a vacuum‐deposited MoO3 layer from various defect states to the conduction band via thermal diffusion. The external electric‐field induces the charge separation through tunneling of generated electrons and holes from MoO3 into the neighboring CsN3‐doped BPhen and hole‐transporting layers, respectively. Moreover, the impacts of constituent materials on the functional effectiveness of TMO‐based interconnectors and their influences on carrier recombination processes for light emission have also been addressed.  相似文献   

2.
The role of transition metal oxides (TMOs) based intermediate connectors in tandem organic light emitting diodes (OLEDs) has been studied via capacitance-voltage and current-voltage characteristics, in order to elucidate the dynamic processes of charges generation and transport within externally applied voltages. The TMO-based intermediate connectors are composed of molybdenum trioxide (MoO3) and cesium azide (CsN3)-doped-4, 7–diphenyl-1, 10-phenanthroline (BPhen) layers, where MoO3 and CsN3 are used due to low deposition temperatures. From the obtained results of capacitance and current density, charges generation in CsN3:BPhen/MoO3/NPB is proposed to the defect states in thermally evaporated MoO3, which offers a minimal energy offset for charges generation. Moreover, our results clearly indicate that charges generation efficiency is not only relying on the MoO3-NPB interface, but also influenced by CsN3:BPhen-MoO3 interface. CsN3 doped BPhen layer further improves charges separation efficiency, which finally results in favorable charges transport into the adjacent layers and ensure to function efficiently for tandem OLEDs.  相似文献   

3.
Bismuth iron garnet Bi3Fe5O12 (BIG) is a multifunctional insulating oxide exhibiting remarkably the largest known Faraday rotation and linear magnetoelectric coupling. Enhancing the electrical conductivity in BIG while preserving its magnetic properties would further widen its range of potential applications in oxitronic devices. Here, a site‐selective codoping strategy in which Ca2+ and Y3+ substitute for Bi3+ is applied. The resulting p‐ and n‐type doped BIG films combine state‐of‐the‐art magneto‐optical properties and semiconducting behaviors above room temperature with rather low resistivity: 40 Ω cm at 450 K is achieved in an n‐type Y‐doped BIG; this is ten orders of magnitude lower than that of Y3Fe5O12. High‐resolution electron spectromicroscopy unveils the complete dopant solubility and the charge compensation mechanisms at the local scale in p‐ and n‐type systems. Oxygen vacancies as intrinsic donors play a key role in the conduction mechanisms of these doped BIG films. On the other hand, a self‐compensation of Ca2+ with oxygen vacancies tends to limit the conduction in p‐type Ca/Y‐doped BIG. These results highlight the possibility of integrating n‐type and p‐type doped BIG films in spintronic structures as well as their potential use in gas sensing applications.  相似文献   

4.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

5.
The present work investigates the influence of the n‐type layer in the connecting unit on the performance of tandem organic light‐emitting devices (OLEDs). The n‐type layer is typically an organic electron‐transporting layer doped with reactive metals. By systematically varying the metal dopants and the electron‐transporting hosts, we have identified the important factors affecting the performance of the tandem OLEDs. Contrary to common belief, device characteristics were found to be insensitive to metal work functions, as supported by the ultraviolet photoemission spectroscopy results that the lowest unoccupied molecular orbitals of all metal‐doped n‐type layers studied here have similar energy levels. It suggests that the electron injection barriers from the connecting units are not sensitive to the metal dopant used. On the other hand, it was found that performance of the n‐type layers depends on their electrical conductivities which can be improved by using an electron‐transporting host with higher electron mobility. This effect is further modulated by the optical transparency of constituent organic layers. The efficiency of tandem OLEDs would decrease as the optical transmittance decreases.  相似文献   

6.
Nanostructures are important for a wide area of applications, but are very often difficult to fabricate. A novel and basic approach for controlled nanofilament growth in an organic/inorganic composite material is demonstrated. Thin films of MoO3‐doped 4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl are grown via vacuum sublimation and analyzed using advanced electron microscopy and spectroscopy techniques. Using electron spectroscopic imaging in the core‐loss and low‐loss regime, MoO3 agglomerations are identified for different doping concentrations. A 3D reconstruction of the thin film yielded by electron tomography reveals a filamentous structure of MoO3 within the organic matrix. These filaments are preferentially oriented along the growth direction and are only a few nanometers in diameter. Furthermore, control of the filament growth is possible by changing the substrate temperature because for composites grown on substrates cooled to 120 K MoO3 agglomeration cannot be detected.  相似文献   

7.
This study reports an effective amidine‐type n‐dopant of 1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU) that can universally dope electron acceptors, including PC61BM, N2200, and ITIC, by mixing the dopant with the acceptors in organic solvents or exposing the acceptor films in the dopant vapor. The doping mechanism is due to its strong electron‐donating property that is also confirmed via the chemical reduction of PEDOT:PSS (yielding color change). The DBU doping considerably increases the electrical conductivity and shifts the Fermi levels up of the PC61BM films. When the DBU‐doped PC61BM is used as an electron‐transporting layer in perovskite solar cells, the n‐doping removes the “S‐shape” of JV characteristics, which leads to the fill factor enhancement from 0.54 to 0.76. Furthermore, the DBU doping can effectively lower the threshold voltage and enhance the electron mobility of PC61BM‐based n‐channel field‐effect transistors. These results show that the DBU can be a promising n‐dopant for solution‐processed electronics.  相似文献   

8.
Interfacial engineering of organic–inorganic halide perovskites in conjunction with different functional materials is anticipated to offer novel heterojunction structures with unique functionalities. Unfortunately, complex material compositions and structures of the organic–inorganic hybrid materials make it difficult to tailor a desirable intermolecular interaction at the interface. Spontaneous and highly specific nucleation of perovskite crystals, that is, methylammonium lead iodide perovskite (CH3NH3PbI3, MAPbI3) at nitrogen‐doped carbon nanotube (NCNT) surfaces for the self‐assembly of MAPbI3/NCNT hybrids is reported. It is demonstrated that the lone‐pair electrons of pyridinic nitrogen‐dopant sites at NCNTs mediate specific interactions with the cationic component in the perovskite structure and serve as the nucleation sites via coordinate bonding formation, as supported by X‐ray photoelectron spectroscopy and density functional theory calculation. The potential suitability of MAPbI3/NCNT hybrids is presented for highly sensitive and selective NO2 sensing layer. This work suggests a reliable self‐assembly route to the molecular level hybridization of organic–inorganic halide perovskites by employing the substitutional dopant sites at graphene‐based nanomaterials.  相似文献   

9.
Multijunction/tandem solar cells have naturally attracted great attention because they are not subject to the Shockley–Queisser limit. Perovskite solar cells are ideal candidates for the top cell in multijunction/tandem devices due to the high power conversion efficiency (PCE) and relatively low voltage loss. Herein, sandwiched gold nanomesh between MoO3 layers is designed as a transparent electrode. The large surface tension of MoO3 effectively improves wettability for gold, resulting in Frank–van der Merwe growth to produce an ultrathin gold nanomesh layer, which guarantees not only excellent conductivity but also great optical transparency, which is particularly important for a multijunction/tandem solar cell. The top MoO3 layer reduces the reflection at the gold layer to further increase light transmission. As a result, the semitransparent perovskite cell shows an 18.3% efficiency, the highest reported for this type of device. When the semitransparent perovskite device is mechanically stacked with a heterojunction silicon solar cell of 23.3% PCE, it yields a combined efficiency of 27.0%, higher than those of both the sub‐cells. This breakthrough in elevating the efficiency of semitransparent and multijunction/tandem devices can help to break the Shockley–Queisser limit.  相似文献   

10.
The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.  相似文献   

11.
Quasi‐2D (Q2D) lead halide perovskites have emerged as promising materials for light‐emitting diodes (LEDs) due to their tunable emission, slowed‐down carrier diffusion, and improved stability. However, they are primarily fabricated through solution methods, which hinders its large‐scale manufacture and practical applications. Physical‐vapor‐deposition (PVD) methods have well demonstrated the capability for reproducible, scalable, and layer‐by‐layer fabrication of high quality organic/inorganic thin films. Herein, for the first time, the full‐evaporation fabrication of organic–inorganic hybrid ((BA)2Csn?1PbnBr3n+1) Q2D–3D PeLEDs is demonstrated. The morphology and crystal phase of the perovskite are controlled from 3D to 2D by modulating material composition, annealing temperature, and film thicknesses. The confinement of carriers in 3D layers and the energy funnel effect are discovered and discussed. Importantly, a record high external quantum efficiency (EQE) of 5.3% based on evaporation method is achieved. Moreover, a centimeter‐scale PeLED (1.5 cm × 2 cm) is obtained. Furthermore, the T50 lifetime of the device with an initial brightness of 100 cd m?2 is found to be 90 min with a thin layer PMMA passivation, which is among the longest for all PVD processed PeLEDs. Overall, this work casts a solid stepping stone towards the fabrication of high‐performance PeLEDs on a large‐scale.  相似文献   

12.
The fabrication of a flexible thermoelectric (TE) device that contains flexible, all‐inorganic hybrid thin films (p‐type single‐wall carbon nanotubes (SWCNTs)/Sb2Te3 and n‐type reduced graphene oxide (RGO)/Bi2Te3) is reported. The optimized power factors of the p‐type and n‐type hybrid thin films at ambient temperature are about 55 and 108 µW m?1 K?2, respectively. The high performance of these films that are fabricated through the combination of vacuum filtration and annealing can be attributed to their planar orientation and network structure. In addition, a TE device, with 10 couples of legs, shows an output power of 23.6 µW at a temperature gradient of 70 K. A prototype of an integrated photovoltaic‐TE (PV‐TE) device demonstrates the ability to harvest low‐grade “waste” thermal energy from the human body and solar irradiation. The flexible TE and PV‐TE device have great potential in wearable energy harvesting and management.  相似文献   

13.
Low‐voltage, hysteresis‐free, flexible thin‐film‐type electronic systems based on networks of single‐walled carbon nanotubes and bilayer organic–inorganic nanodielectrics are detailed in work by Rogers and co‐workers reported on p. 2355. The cover image shows a schematic array of such thin‐film transistors (TFTs) on a plastic substrate. The structure of the bilayer nanodielectric, which consists of a film of HfO2 formed by atomic layer deposition and an ultrathin layer of epoxy formed by spin‐casting, is also illustrated schematically. High‐capacitance bilayer dielectrics based on atomic‐layer‐deposited HfO2 and spin‐cast epoxy are used with networks of single‐walled carbon nanotubes (SWNTs) to enable low‐voltage, hysteresis‐free, and high‐performance thin‐film transistors (TFTs) on silicon and flexible plastic substrates. These HfO2–epoxy dielectrics exhibit excellent properties including mechanical flexibility, large capacitance (up to ca. 330 nF cm–2), and low leakage current (ca. 10–8 A cm–2); their low‐temperature (ca. 150 °C) deposition makes them compatible with a range of plastic substrates. Analysis and measurements of these dielectrics as gate insulators in SWNT TFTs illustrate several attractive characteristics for this application. Their compatibility with polymers used for charge‐transfer doping of SWNTs is also demonstrated through the fabrication of n‐channel SWNT TFTs, low‐voltage p–n diodes, and complementary logic gates.  相似文献   

14.
The selective tuning of the operational mode from ambipolar to unipolar transport in organic field‐effect transistors (OFETs) by printing molecular dopants is reported. The field‐effect mobility (μFET) and onset voltage (Von) of both for electrons and holes in initially ambipolar methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) OFETs are precisely modulated by incorporating a small amount of cesium fluoride (CsF) n‐type dopant or tetrafluoro‐tetracyanoquinodimethane (F4‐TCNQ) p‐type dopant for n‐channel or p‐channel OFETs either by blending or inkjet printing of the dopant on the pre‐deposited semiconductor. Excess carriers introduced by the chemical doping compensate traps by shifting the Fermi level (EF) toward respective transport energy levels and therefore increase the number of mobile charges electrostatically accumulated in channel at the same gate bias voltage. In particular, n‐doped OFETs with CsF show gate‐voltage independent Ohmic injection. Interestingly, n‐ or p‐doped OFETs show a lower sensitivity to gate‐bias stress and an improved ambient stability with respect to pristine devices. Finally, complementary inverters composed of n‐ and p‐type PCBM OFETs are demonstrated by selective doping of the pre‐deposited semiconductor via inkjet printing of the dopants.  相似文献   

15.
We demonstrate novel organic light‐emitting diode (LED) materials that contain a green phosphorescent dye (dmbpy)Re(CO)3Cl (dmbpy = 4,4′‐dimethyl‐2,2′‐bipyridine), and a red fluorescent dye 4‐dicyanomethylene‐6‐(p‐dimethylaminostyryl)‐2‐methyl‐4H‐pyran (DCM) as dopants and polyvinylcarbazole (PVK) as the host. The photoluminescence (PL) and electroluminescence (EL) properties of these complex materials were studied. The energy transfer efficiency from PVK host to DCM is increased by the (dmbpy)Re(CO)3Cl co‐dopant, which has an emission energy between that of PVK and DCM. The (dmbpy)Re(CO)3Cl, which emits a long‐lived phosphorescence, is used as an energy coupler, providing the possibility to harvest both singlet and triplet energy in the devices. The pure red emission from DCM was observed from PL and EL spectra of (dmbpy)Re(CO)3‐Cl(> 2.0 wt.‐%):DCM(> 0.5 wt. %) doped PVK films, demonstrating an efficient energy transfer from PVK and (dmbpy)Re(CO)3‐Cl to DCM. By optimizing the concentration of DCM and (dmbpy)Re(CO)3Cl in PVK, a maximum EL quantum efficiency of 0.42 cd A–1 at a current density of 9.5 mA cm–2 was obtained. The EL quantum efficiency of the doubly doped device is significantly enhanced in comparison with both a DCM‐only doped PVK device and a DCM‐doped PVK device with the green fluorescent dye Alq3 as co‐dopant. The improvement in the operating characteristics of the phosphorescent and fluorescent dye doubly doped device is attributed to efficient energy transfer in the system, in which both triplet and singlet excitons are used for resultant emission in the polymer device.  相似文献   

16.
Organic–inorganic heterostructures are an emerging topic that is very interesting for optoelectronics. Here, non‐conventional p–n junctions are investigated using organic rubrene single crystal and 2D MoS2 as the p‐ and n‐type semiconducting materials, respectively. The current‐rectifying behavior is clearly observed in the junction device. The rectification ratio can be electrically tuned by the gate voltage due to the 2D nature of the heterostructure. The devices also show good photoresponse properties with a photoresponsivity of ≈500 mA W?1 and a fast response time. These findings suggest a new route to facilitate the design of nanoelectronic and optoelectronic devices based on layered inorganics and organics.  相似文献   

17.
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells.  相似文献   

18.
Since transition metal dichalcogenide (TMD) semiconductors are found as 2D van der Waals materials with a discrete energy bandgap, many 2D‐like thin field effect transistors (FETs) and PN diodes are reported as prototype electrical and optoelectronic devices. As a potential application of display electronics, transparent 2D FET devices are also reported recently. Such transparent 2D FETs are very few in report, yet no p‐type channel 2D‐like FETs are seen. Here, 2D‐like thin transparent p‐channel MoTe2 FETs with oxygen (O2) plasma‐induced MoOx/Pt/indium‐tin‐oxide (ITO) contact are reported for the first time. For source/drain contact, 60 s short O2 plasma and ultrathin Pt‐deposition processes on MoTe2 surface are sequentially introduced before ITO thin film deposition and patterning. As a result, almost transparent 2D FETs are obtained with a decent mobility of ≈5 cm2 V?1 s?1, a high ON/OFF current ratio of ≈105, and 70% transmittance. In particular, for normal MoTe2 FETs without ITO, O2 plasma process greatly improves the hole injection efficiency and device mobility (≈60 cm2 V?1 s?1), introducing ultrathin MoOx between Pt source/drain and MoTe2. As a final device application, a photovoltaic current modulator, where the transparent FET stably operates as gated by photovoltaic effects, is integrated.  相似文献   

19.
Structural and electrical properties of Al‐doped ZnO (AZO) films deposited by atomic layer deposition (ALD) are investigated to study the extrinsic doping mechanism of a transparent conducting oxide. ALD‐AZO films exhibit a unique layer‐by‐layer structure consisting of a ZnO matrix and Al2O3 dopant layers, as determined by transmission electron microscopy analysis. In these layered AZO films, a single Al2O3 dopant layer deposited during one ALD cycle could provide ≈4.5 × 1013 cm?2 free electrons to the ZnO. The effective field model for doping is suggested to explain the decrease in the carrier concentration of ALD‐AZO films when the interval between the Al2O3 layers is reduced to less than ≈2.6 nm (>3.4 at% Al). By correlating the electrical and structural properties, an extrinsic doping mechanism of ALD‐AZO films is proposed in which the incorporated Al atoms take oxygen from the ZnO matrix and form doubly charged donors, such as oxygen vacancies or zinc interstitials.  相似文献   

20.
The rate‐limiting step of charge generation in charge‐generation units (CGUs) composed of a p‐doped hole‐transporting layer (p‐HTL), 1,4,5,8,9,11‐hexaazatriphenylene hexacarbonitrile (HATCN) and n‐doped electron‐transporting layer (n‐ETL), where 1,1‐bis‐(4‐bis(4‐methyl‐phenyl)‐amino‐phenyl)‐cyclohexane (TAPC) was used as the HTL is reported. Energy level alignment determined by the capacitance–voltage (CV) measurements and the current density–voltage characteristics of the structure clearly show that the electron injection at the HATCN/n‐ETL junction limits the charge generation in the CGUs rather than charge generation itself at the p‐HTL/HATCN junction. Consequently, the CGUs with 30 mol% Rb2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) formed with the HATCN layer generates charges very efficiently and the excess voltage required to generate the current density of ±10 mA cm?2 is around 0.17 V, which is extremely small compared with the literature values reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号