首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biocompatible‐ingestible electronic circuits and capsules for medical diagnosis and monitoring are currently based on traditional silicon technology. Organic electronics has huge potential for developing biodegradable, biocompatible, bioresorbable, or even metabolizable products. An ideal pathway for such electronic devices involves fabrication with materials from nature, or materials found in common commodity products. Transistors with an operational voltage as low as 4–5 V, a source drain current of up to 0.5 μA and an on‐off ratio of 3–5 orders of magnitude have been fabricated with such materials. This work comprises steps towards environmentally safe devices in low‐cost, large volume, disposable or throwaway electronic applications, such as in food packaging, plastic bags, and disposable dishware. In addition, there is significant potential to use such electronic items in biomedical implants.  相似文献   

2.
A new concept for reusable eco‐friendly hydrogel electrolytes based on cellulose is introduced. The reported electrolytes are designed and engineered through a simple, fast, low‐cost, and eco‐friendly dissolution method of microcrystalline cellulose at low temperature using an aqueous LiOH/urea solvent system. The cellulose solution is combined with carboxymethyl cellulose, followed by the regeneration and simultaneous ion incorporation. The produced free standing cellulose‐based electrolyte films exhibit interesting properties for application in flexible electrochemical devices, such as biosensors or electrolyte‐gated transistors (EGTs), because of their high specific capacitances (4–5 µF cm?2), transparency, and flexibility. Indium–gallium–zinc‐oxide EGTs on glass with laminated cellulose‐based hydrogel electrolytes (CHEs) as the gate dielectric are produced presenting a low working voltage (<2 V), showing an on–off current ratio (I on/off) of 106, a subthreshold swing lower than 0.2 V dec?1, and saturation mobility (μSat) reaching 26 cm2 V?1 s?1. The flexible CHE‐gated transistors on paper are also demonstrated, which operate at switching frequencies up to 100 Hz. Combining the flexibility of the EGTs on paper with the reusability of the developed CHEs is a breakthrough toward biodegradable advanced functional materials allied with disposable/recyclable and low‐cost electronic devices.  相似文献   

3.
Bioresorbable implantable medical devices show a great potential for applications requiring medical care over well‐defined periods of time. Once their function is fulfilled, such implants naturally degrade and resorb in the body, which eliminates adverse long‐term effects or the need for a secondary surgery to extract the implanted device. Since biodegradable materials are water‐soluble, the fabrication of such transient electronic circuits and devices requires special care and needs to rely solely on dry processing steps without exposure to aqueous solutions. A further challenge is the in vivo powering of medical implants that are only constituted of biodegradable materials. This paper describes the design, fabrication, and testing of radio‐frequency biodegradable magnesium microresonators. To this end, an innovative microfabrication process with minimal exposure to aqueous media is developed to fabricate magnesium‐based, water‐soluble electronic components. It consists of a novel sequence of only three steps: one physical vapor deposition, one photolithography, and one ion beam etching step. The frequency‐selective wireless heating of different resonators is demonstrated. This represents a significant step toward their use as power receivers and microheaters in biodegradable implantable medical devices, for applications such as triggered drug release.  相似文献   

4.
Physically flexible electronics offer a wide range of benefits, including the development of next‐generation consumer electronics and healthcare products. The advancement of physical flexibility, typically achieved by the reduction of the total device thickness, including substrates and encapsulation layers, shows great promise for skin‐laminated electronics. Organic electronics—devices relying on carbon‐based materials—offer many advantages over their inorganic counterparts, including the following: significantly lower fabrication temperatures resulting in alternative fabrication techniques, including inkjet and roll‐to‐roll printing, enabling low‐cost and large‐area fabrication; biocompatibility; and spectacular physical flexibility. This article presents a review, spanning the last two decades, of organic field‐effect transistors with the total thickness of just a few microns as well as devices demonstrated in this decade with a total thickness of few hundred of nanometers. A handful of demonstrations of other organic electronic thin film devices are also presented.  相似文献   

5.
In this contribution, it is shown that the method of laser‐desorption/ionization time‐of‐flight mass spectrometry (LDI‐TOF‐MS) is a powerful technique for analyzing complete organic devices, such as organic light‐emitting diodes (OLEDs) or organic solar cells. LDI‐TOF‐MS has the potential to analyze fully processed organic devices without special pretreatment such as dissolving the device, peeling off the metal cathode, or using additional matrix materials. Thus, devices may be analysed as they are with a minimum of measurement artefacts. It is demonstrated that the method allows an analysis of complex organic multilayer devices, their composition, and incorporated impurities. It even allows possible electrochemical reaction products caused by device degradation to be analyzed. Thus, LDI‐TOF‐MS has major advantages compared to measurements of dissolved samples. As an example, the identification of all of the materials used in a complete OLED is shown. Furthermore, a detailed chemical analysis of long‐term driven OLEDs, including the detection of degradation products, is presented. From these data, several degradation mechanisms can be distinguished.  相似文献   

6.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

7.
This paper reports the first high‐performance water‐based isotropically conductive adhesives (WBICAs) – a promising material for both electrical interconnects and printed circuits for ultralow‐cost flexible/foldable printed electronics. Through combining surface iodination and in situ reduction treatment, the electrically conductivity of the WBICAs are dramatically improved (8 × 10‐5 Ω cm with 80 wt% of silver); moreover, their reliability (stable for at least 1440 h during 85 °C/85% RH aging) meets the essential requirements for microelectronic applications. Prototyped applications in carrying light emitting diode (LED) arrays and radio frequency identification (RFID) antennas on flexible substrates were demonstrated, which showed satisfactory performances. Moreover, their water‐based character may render them more environmentally benign (no volatile organic chemicals involved in the printing and machine maintenance processes), more convenient in processing (reducing the processing steps), and energy economic (thermally sintering the silver fillers and curing the resin is not necessary unlike conventional ICAs). Therefore, they are especially advantageous for mass‐fabricating flexible electronic devices when coupled with paper and other low‐cost substrate materials such as PET, PI, wood, rubber, and textiles.  相似文献   

8.
Wearable strain sensors are widely researched as core components in electronic skin. However, their limited capability of detecting only a single axial strain, and their low sensitivity, stability, opacity, and high production costs hinder their use in advanced applications. Herein, multiaxially highly sensitive, optically transparent, chemically stable, and solution‐processed strain sensors are demonstrated. Transparent indium tin oxide and zinc oxide nanocrystals serve as metallic and insulating components in a metal–insulator matrix and as active materials for strain gauges. Synergetic sensitivity‐ and stability‐reinforcing agents are developed using a transparent SU‐8 polymer to enhance the sensitivity and encapsulate the devices, elevating the gauge factor up to over 3000 by blocking the reconnection of cracks caused by the Poisson effect. Cross‐shaped patterns with an orthogonal crack strategy are developed to detect a complex multiaxial strain, efficiently distinguishing strains applied in various directions with high sensitivity and selectivity. Finally, all‐transparent wearable strain sensors with Ag nanowire electrodes are fabricated using an all‐solution process, which effectively measure not only the human motion or emotion, but also the multiaxial strains occurring during human motion in real time. The strategies can provide a pathway to realize cost‐effective and high‐performance wearable sensors for advanced applications such as bio‐integrated devices.  相似文献   

9.
Transient electronics, arising electronic devices with dissolvable or degradable features on demand, is still at an early stage of development due to the limited choices of materials and strategies. Herein, a facile fabrication method for transient circuits by the combination of room‐temperature liquid metals (RTLMs) as the electronic circuit and water‐soluble poly(vinyl alcohol) (PVA) as the packaging material is reported. The as‐made transient circuits exhibit remarkable durability and stable electric performance upon bending and twisting, while possessing short transience times, owing to the excellent solubility of PVA substrates and the intrinsic flexibility of RTLM patterns. Moreover, the RTLM‐based transient circuit shows an extremely high recycling efficiency, up to 96% of the employed RTLM can be recovered. As such, the economic and environmental viability of transient electronics increases substantially. To validate this concept, the surface patterning of RTLMs with complicated shapes is demonstrated, and a transient antenna is subsequently applied for passive near‐field communication tag and a transient capacitive touch sensor. The application of the RTLM‐based transient circuit for sequentially turning off an array of light‐emitting‐diode lamps is also demonstrated. The present RTLM‐based PVA‐encapsulated circuits substantially expand the scope of transient electronics toward flexible and recyclable transient systems.  相似文献   

10.
The recent emergence of materials for electronic systems that are capable of programmable self‐destruction and/or bio/eco‐resorption creates the potential for important classes of devices that cannot be easily addressed using conventional technologies, ranging from temporary biomedical implants to enviromentally benign environmental monitors to hardware secure data systems. Although most previous demonstrations rely on wet chemistry to initiate transient processes of degradation/decomposition, options in “dry transient electronic systems” could expand the range of possible uses. The work presented here introduces materials and composite systems in which sublimation under ambient conditions leads to mechanical fragmentation and disintegration of active devices upon disappearance of a supporting substrate, encapsulation layer, interlayer dielectric and/or gate dielectric. Examples span arrays of transistors based on silicon nanomembranes with specialized device designs to solar cells adapted from commercial components.  相似文献   

11.
Portable and wearable sensors have attracted considerable attention in the healthcare field because they can be worn or implanted into a human body to monitor environmental information. However, sensors cannot work independently and require power. Flexible in‐plane micro‐supercapacitor (MSC) is a suitable power device that can be integrated with sensors on a single chip. Meanwhile, paper is an ideal flexible substrate because it is cheap and disposable and has a porous and rough surface that enhances interface adhesion with electronic devices. In this study, a new strategy to integrate MSCs, which have excellent electrochemical and mechanical performances, with sensors on a single piece of paper is proposed. The integration is achieved by printing Ni circuit on paper without using a precoating underlay. Ink diffusion is also addressed to some degree. Meanwhile, a UV sensor is integrated on a single paper, and the as‐integrated device shows good sensing and self‐powering capabilities. MSCs can also be integrated with a gas sensor on one‐piece paper and can be charged by connecting it to a solar cell. Thus, it is potentially feasible that a flexible paper can be used for integrating MSCs with solar cell and various sensors to generate, store, and use energy.  相似文献   

12.
Stretchable electrical interconnects based on serpentines combined with elastic materials are utilized in various classes of wearable electronics. However, such interconnects are primarily for direct current or low‐frequency signals and incompatible with microwave electronics that enable wireless communication. In this paper, design and fabrication procedures are described for stretchable transmission line capable of delivering microwave signals. The stretchable transmission line has twisted‐pair design integrated into thin‐film serpentine microstructure to minimize electromagnetic interference, such that the line's performance is minimally affected by the environment in close proximity, allowing its use in thin‐film bioelectronics, such as the epidermal electronic system. Detailed analysis, simulations, and experimental results show that the stretchable transmission line has negligible changes in performance when stretched and is operable on skin through suppressed radiated emission achieved with the twisted‐pair geometry. Furthermore, stretchable microwave low‐pass filter and band‐stop filter are demonstrated using the twisted‐pair structure to show the feasibility of the transmission lines as stretchable passive components. These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.  相似文献   

13.
Electronic skin sensing devices are an emerging technology and have substantial demand in vast practical fields including wearable sensing, robotics, and user‐interactive interfaces. In order to imitate or even outperform the capabilities of natural skin, the keen exploration of materials, device structures, and new functions is desired. However, the very high resistance and the inadequate current switching and sensitivity of reported electronic skins hinder to further develop and explore the promising uses of the emerging sensing devices. Here, a novel resistive cloth‐based skin‐like sensor device is reported that possesses unprecedented features including ultrahigh current‐switching behavior of ≈107 and giant high sensitivity of 1.04 × 104–6.57 × 106 kPa?1 in a low‐pressure region of <3 kPa. Notably, both superior features can be achieved by a very low working voltage of 0.1 V. Taking these remarkable traits, the device not only exhibits excellent sensing abilities to various mechanical forces, meeting various applications required for skin‐like sensors, but also demonstrates a unique competence to facile integration with other functional devices for various purposes with ultrasensitive capabilities. Therefore, the new methodologies presented here enable to greatly enlarge and advance the development of versatile electronic skin applications.  相似文献   

14.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

15.
Here, a novel fabrication technique for integrated organic devices on substrates with complex structure is presented. For this work, free‐standing polymeric masks with stencil‐patterns are fabricated using an ultra‐violet (UV) curable polyurethaneacrylate (PUA) mixture, and used as shadow masks for thermal evaporation. High flexibility and adhesive properties of the free‐standing PUA masks ensure conformal contact with various materials such as glass, silicon (Si), and polymer, and thus can also be utilized as patterning masks for solution‐based deposition methods, such as spin‐coating and drop‐casting. Based on this technique, a number of integrated organic transistors are fabricated simultaneously on a cylindrical glass bottle with high curvature, as well as on a flat silicon wafer. It is anticipated that these results will be applied to the development of various integrated organic devices on complex‐structured substrates, which can lead to further applications.  相似文献   

16.
The development of stretchable electronic devices that are soft and conformable has relied heavily on a single material—polydimethylsiloxane—as the elastomeric substrate. Although polydimethylsiloxane has a number of advantageous characteristics, its high gas permeability is detrimental to stretchable devices that use materials sensitive to oxygen and water vapor, such as organic semiconductors and oxidizable metals. Failing to protect these materials from atmosphere‐induced decomposition leads to premature device failure; therefore, it is imperative to develop elastomers with gas barrier properties that enable stretchable electronics with practical lifetimes. Here, butyl rubber—a material with an intrinsically low gas permeability traditionally used in the innerliners of tires to maintain air pressure—is reinvented for stretchable electronics. This new material is smooth and optically transparent, possesses the low gas permeability typical of butyl rubber, and vastly outperforms polydimethylsiloxane as an encapsulating barrier to prevent the atmospheric degradation of sensitive electronic materials and the premature failure of functioning organic devices. The merits of transparent butyl rubber presented here position this material as an important counterpart to polydimethylsiloxane that will enable future generation stretchable electronics.  相似文献   

17.
Fabricating electronic devices require integrating metallic conductors and polymeric insulators in complex structures. Current metal‐patterning methods such as evaporation and laser sintering require vacuum, multistep processes, and high temperature during sintering or postannealing to achieve desirable electrical conductivity, which damages low‐temperature polymer substrates. Here reports a facile ecofriendly room‐temperature metal printing paradigm using visible‐light projection lithography. With a particle‐free reactive silver ink, photoinduced redox reaction occurs to form metallic silver within designed illuminated regions through a digital mask on substrate with insignificant temperature change (<4 °C). The patterns exhibit remarkably high conductivity achievable at room temperature (2.4 × 107 S m?1, ≈40% of bulk silver conductivity) after simple room‐temperature chemical annealing for 1–2 s. The finest silver trace produced reaches 15 µm. Neither extra thermal energy input nor physical mask is required for the entire fabrication process. Metal patterns were printed on various substrates, including polyethylene terephthalate, polydimethylsiloxane, polyimide, Scotch tape, print paper, Si wafer, glass coverslip, and polystyrene. By changing inks, this paradigm can be extended to print various metals and metal–polymer hybrid structures. This method greatly simplifies the metal‐patterning process and expands printability and substrate materials, showing huge potential in fabricating microelectronics with one system.  相似文献   

18.
The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light‐emitting diodes (OLEDs), photovoltaics (OPVs), and field‐effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant‐modified cathodes, hole‐transporting buffer layers, and self‐assembled monolayer (SAM)‐modified anodes are highlighted. In addition to enabling the production of high‐efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source–drain electrode–semiconductor interfaces, dielectric–semiconductor interfaces, and ultrathin dielectrics is shown to allow for high‐performance OFETs.  相似文献   

19.
Paper has been utilized as an ideal platform for chemical, biological, and mechanical sensing for its fibrous structures and properties in addition to its low cost. However, current studies on pressure‐sensitive papers have not fully utilized the unique advantages of papers, such as printability, cuttability, and foldability. Moreover, the existing resistive, capacitive, and triboelectric sensing modalities have long‐standing challenges in sensitivity, noise‐proofing, response time, linearity, etc. Here, a novel flexible iontronic sensing mechanism, referred to as iontronic sensing paper (ISP), is introduced to the classic paper substrates by incorporating both ionic and conductive patterns into an all‐in‐one flexible sensing platform. The ISP can then be structured into 2D or 3D tactile‐sensitive origamis only by the paper‐specific manipulations of printing, cutting, folding, and gluing. Notably, the ISP device possesses a device sensitivity of 10 nF kPa?1 cm?2, which is thousands of times higher than that of the commercial counterpart, a resolution of 6.25 Pa, a single‐millisecond response time, and a high linearity (R 2 > 0.996). Benefiting from the unique properties of the fibrous paper structures and its remarkable performances, the ISP devices hold enormous potential for the emerging human–machine interfaces, including smart packaging, health wearables, and pressure‐sensitive paper matrix.  相似文献   

20.
The rapid progress in flexible electronic devices has attracted immense interest in many applications, such as health monitoring devices, sensory skins, and implantable apparatus. Here, inspired by the adhesion features of mussels and the color shift mechanism of chameleons, a novel stretchable, adhesive, and conductive structural color film is presented for visually flexible electronics. The film is generated by adding a conductive carbon nanotubes polydopamine (PDA) filler into an elastic polyurethane (PU) inverse opal scaffold. Owing to the brilliant flexibility and inverse opal structure of the PU layer, the film shows stable stretchability and brilliant structural color. Besides, the catechol groups on PDA impart the film with high tissue adhesiveness and self‐healing capability. Notably, because of its responsiveness, the resultant film is endowed with color‐changing ability that responds to motions, which can function as dual‐signal soft human‐motion sensors for real‐time color‐sensing and electrical signal monitoring. These features make the bio‐inspired hydrogel‐based electronics highly potential in the flexible electronics field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号