首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The cost‐effective self‐assembly of 80 nm Au nanoparticles (NPs) into large‐domain, hexagonally close‐packed arrays for high‐sensitivity and high‐fidelity surface‐enhanced Raman spectroscopy (SERS) is demonstrated. These arrays exhibit specific optical resonances due to strong interparticle coupling, which are well reproduced by finite‐difference time‐domain (FDTD) simulations. The gaps between NPs form a regular lattice of hot spots that enable a large amplification of both photoluminescence and Raman signals. At smaller wavelengths the hot spots are extended away from the minimum‐gap positions, which allows SERS of larger analytes that do not fit into small gaps. Using CdSe quantum dots (QDs) a 3–5 times larger photoluminescence enhancement than previously reported is experimentally demonstrated and an unambiguous estimate of the electromagnetic SERS enhancement factor of ≈104 is obtained by direct scanning electron microscopy imaging of QDs responsible for the Raman signal. Much stronger enhancement of ≈108 is obtained at larger wavelengths for benzenethiol molecules penetrating the NP gaps.  相似文献   

4.
5.
Viral capsid–nanoparticle hybrid structures offer new opportunities for nanobiotechnology. We previously generated virus‐based nanoparticles (VNPs) of simian virus 40 (SV40) containing quantum dots (QDs) for cellular imaging. However, as an interesting issue of nano‐bio interfaces, the mechanism of nanoparticle (NP) encapsulation by viral coat proteins remains unclear. Here, four kinds of QDs with the same core/shell but different surface coatings are tested for encapsulation. All the QDs can be encapsulated efficiently and there is no correlation between the encapsulation efficiency and the surface charge of the QDs. All the SV40 VNPs encapsulating differently modified QDs show similar structures, fluorescence properties, and activity in entering living cells. These results demonstrate the flexibility of SV40 major capsid protein VP1 in NP encapsulation and provide new clues to the mechanism of NP packaging by viral shells.  相似文献   

6.
7.
8.
9.
10.
Coating DNA is an effective way to modulate its physical properties and interactions. Current chemosynthetic polymers form DNA aggregates with random size and shape. In this study, monodisperse protein diblock copolymers are produced at high yield in recombinant yeast. They carry a large hydrophilic colloidal block (≈400 amino acids) linked to a short binding block (≈12 basic amino acids). It is demonstrated that these protein polymers complex single DNA molecules as highly stable nanorods, reminiscent of cylindrical viruses. It is proposed that inter‐ and intramolecular bridging of DNA molecules are prevented completely by the small size of the binding block attached to the large colloidal stability block. These protein diblocks serve as a scaffold that can be tuned for application in DNA‐based nanotechnology.  相似文献   

11.
12.
13.
Highly uniform and large‐area single‐walled carbon‐nanotube (SWNT) networks are realized by the dip‐coating method, which is based on fundamental fluid‐dynamic phenomena such as capillary condensation and surface tension. The changes in the polarity and hydration properties of the substrate affect the morphology of the SWNT networks and result in nonlinear growth of the networks in the repetitive dip‐coating process. The density and the thickness of the SWNT networks are controlled by processing variables including number of dip coatings, concentration of SWNT colloidal solution, and withdrawal velocity. The networks have uniform sheet resistances and high optical transmittance in the visible wavelength range.  相似文献   

14.
15.
Self‐assembled cobalt particle arrays are formed by annealing, which cause agglomeration (dewetting) of thin Co films on oxidized silicon substrates that are topographically prepatterned with an array of 200‐nm‐period pits. The Co nanoparticle size and uniformity are related to the initial film thickness, annealing temperature, and template geometry. One particle per 200‐nm‐period pit is formed from a 15‐nm film annealed at 850 °C; on a smooth substrate, the same annealing process forms particles with an average interparticle distance of 200 nm. Laser annealing enables templated dewetting of 5‐nm‐thick films to give one particle per pit. Although the as‐deposited films exhibit a mixture of hexagonal close‐packed and face‐centered cubic (fcc) phases, the ordered cobalt particles are predominantly twinned fcc crystals with weak magnetic anisotropy. Templated dewetting is shown to provide a method for forming arrays of nanoparticles with well‐controlled sizes and positions.  相似文献   

16.
Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self‐assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds.  相似文献   

17.
A new and simple method is presented to fluorinate the surfaces of poorly reactive hydrophobic polymers in a more environmentally friendly way using the protein hydrophobin (HFBII) as a nanosized primer layer. In particular, HFBII, via electrostatic interactions, enables the otherwise inefficient binding of a phosphate‐terminated perfluoropolyether onto polystyrene, polypropylene, and low‐density polyethylene surfaces. The binding between HFBII and the perfluoropolyether depends significantly on the environmental pH, reaching the maximum stability at pH 4. Upon treatment, the polymeric surfaces mostly retain their hydrophobic character but also acquire remarkable oil repellency, which is not observed in the absence of the protein primer. The functionalization proceeds rapidly and spontaneously at room temperature in aqueous solutions without requiring energy‐intensive procedures, such as plasma or irradiation treatments.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号