共查询到20条相似文献,搜索用时 15 毫秒
1.
The findings from an investigation of GCL overlap for a GCL constructed as part of a 55 m long (3H:1V) composite side liner for a landfill cell after 18 months exposure in Melbourne Australia are reported. It is concluded that the nominated minimum overlap of 300 mm was appropriate to achieve the design intent for the particular GCL examined. It is also concluded that for the exposure to which the GCL was subjected, the particular GCL experienced 50–80 mm of shrinkage during 18 months of exposure when the geomembrane was covered by a 5 mm thick off-white geotextile protection layer. 相似文献
2.
《Geotextiles and Geomembranes》2023,51(5):93-103
Flow in an idealized geosynthetic clay liner (GCL) containing bentonite comprised of equisized and equispaced square granules was simulated using a hydrodynamic model to quantitatively evaluate the premise that the hydraulic conductivity of GCLs diminishes as the bentonite granules hydrate and swell into adjacent intergranular pores, creating smaller and tortuous intergranular flow paths. Predictions with the model indicate that hydraulic conductivity decreases as granules swell and intergranular pores become smaller, and that greater granule swelling during hydration is required to achieve low hydraulic conductivity when the bentonite is comprised of larger granules, or the bentonite density is lower (lower bentonite mass per unit area). Predictions made with the model indicate that intergranular pores become extremely small (<1 μm) as the hydraulic conductivity approaches 10−11 m/s. These outcomes are consistent with experimental data showing that GCLs are more permeable when hydrated and permeated with solutions that suppress swelling of the bentonite granules, and that the hydraulic conductivity of GCLs with bentonite having smaller intergranular pores (e.g., GCLs with smaller bentonite granules, more broadly graded particles, or higher bentonite density) is less sensitive to solutions that suppress swelling. 相似文献
3.
《Geotextiles and Geomembranes》2023,51(4):85-94
Experiments quantifying GCL permittivity and the ultimate water head the GCLs can sustain before the initiation of internal erosion when underlain by a 50 mm angular to subangular gravel subgrade are conducted. The influence of different geotextiles over the subgrade, water heads, hydration periods before testing, masses per unit area of bentonite within the GCL, and ionic strengths of the solution (cation exchange) are considered. Test results show that GCL with the scrim-reinforced nonwoven geotextile over the subgrade has the best hydraulic performance against internal erosion, followed by the woven geotextile coated with a 110 g/m2 polypropylene film. A woven or nonwoven is the least useful for preventing internal erosion, with the corresponding threshold water head initiating internal erosion >39 m for scrim-reinforced nonwoven, 21 m for lightly coated woven, 4–5 m for woven and nonwoven alone, respectively. Cation exchange, length of hydration, and mass per unit area of bentonite do not notably affect the threshold water head for the subgrade examined. Once internal erosion occurs, there is a 3-order of magnitude increase in permittivity. The practical implications are discussed. 相似文献
4.
《Geotextiles and Geomembranes》2014,42(5):445-456
Leaving a composite liner exposed for an extended period can sometimes lead to down-slope bentonite erosion from geosynthetic clay liners (GCLs). This laboratory study examines a number of factors that can affect the erosion of bentonite particles with an imposed flow of water for one particular geotextile-encased, needle-punched GCL. The factors examined include the effect of an initial wet/dry cycle, water chemistry, flow rate, slope, prior cation exchange, and the effect of no-drying phase in the test cycle. No erosion was observed unless the GCL had been hydrated and dried to create a wet/dry cycle. The most critical factor was found to be the water chemistry. No erosion was observed with tap water (39 ppm calcium) with up to 360 cycles and a flow of 3 L/hour. Tests simulating the evaporation and condensation of water below an exposed composite liner by imposing deionized water on the GCL surface developed erosion holes within 5–6 cycles. 相似文献
5.
《Geotextiles and Geomembranes》2020,48(2):137-156
The behaviour of geosynthetic clay liners (GCLs) as part of a physical-environmental system is examined. Consideration is given to: (a) both the physical and hydraulic interactions with the materials, and the chemical interactions with the fluids, above and below the liner, (b) time-dependent changes in the materials, (c) heat generated from the material to be contained, as well as (d) the climatic conditions both during construction and during service. This paper explores some common perceptions about GCL behaviour and then examines the misconceptions that can arise and their implications. It demonstrates how what may first appear obvious is not always as one expects and that more is not always better. It discusses: (i) the pore structure of a GCL, (ii) the dependency of the water retention curve of the GCL on its structure, bentonite particle sizes and applied stress, (iii) the effect of the subgrade pore water chemistry, (iv) the mineralogy of the subgrade, and (v) thermal effects. The desirability of a GCL being reasonably well-hydrated before being permeated is examined. The critical size of needle-punch bundles at which preferential flow can increase hydraulic conductivity by orders of magnitude is illustrated. The dependency of self-healing of holes on the interaction between GCL and subgrade is discussed. Finally, the transmissivity of the geomembrane/GCL interface is shown to be a function of GCL and geomembrane characteristics and to be poorly correlated with GCL hydraulic conductivity. 相似文献
6.
GCLs containing powdered Na-bentonite treated with different dosages of a proprietary additive intended to reduce the impacts of chemical interactions were permeated with three solutions: a hyperalkaline solution (1 M NaOH and 1.3 mM CsCl) having similar pH to aluminum refining leachate, a 1.3 mM CsCl solution (no NaOH), and DI water. For a given permeant solution, the hydraulic conductivity of both GCLs was similar. Thus, the higher additive dosage had no measureable impact on hydraulic conductivity. Hydraulic conductivity of both GCLs decreased by a factor of approximately 1.5–1.8 during permeation with CsCl in response to osmotic swelling induced by the low ionic strength of the CsCl solution entering the pore space. In contrast, permeation with the NaOH–CsCl solution caused the hydraulic conductivity of both GCLs to increase modestly (<50 times the hydraulic conductivity to DI water), and then level out (or decrease slightly) as a result of reduced osmotic swelling in the interlayer combined with dissolution of the mineral. For the tests conducted with CsCl solution, nearly all of the Cs was adsorbed by the bentonite. In contrast, Cs broke through readily when the NaOH–CsCl solution was used as the permeant solution. Permeation with the NaOH–CsCl solution also increased the sodicity of the bentonite by replacing bound K, Ca, and Mg on the mineral surface. 相似文献
7.
《Soils and Foundations》2022,62(6):101235
Polymer-enhanced bentonites for geoenvironmental containment barriers, such as bentonite-polyacrylic-acid composite (BPC), generally have low hydraulic conductivity (e.g., k < 10?10 m/s) even when exposed to aggressive waste solutions. However, understanding of diffusion and membrane behavior properties of enhanced bentonites and associated impacts on coupled contaminant transport through the barrier remains limited. In this study, hydraulic conductivity (k), effective diffusion coefficients (D*), and membrane efficiencies (ω) were measured for BPC with 3.2 % polymer content (by mass; referred to as BPC-3.2). Tests were performed with potassium chloride (KCl) solutions ranging from dilute (2.5 mM) to aggressive (400 mM) concentrations. As concentration increased, D* increased by a factor of three, ω decreased by two orders of magnitude, and k remained relatively low (1.2 × 10?11 to 2.9 × 10?11 m/s). The experimental results were paired with an existing coupled solute transport model to evaluate the significance of membrane behavior and diffusion on predicted total solute flux through a geosynthetic clay liner (GCL) and a GCL overlying an attenuation layer. The predicted mass flux was diffusion dominated, with the diffusive flux greater than the advective flux by one to two orders of magnitude. Membrane behavior reduced predicted total solute flux through the GCL by 5.8 to 61 %. The results demonstrate the role of coupled solute transport in the long-term performance of bentonite barriers, and advance understanding of contaminant transport in BPC. 相似文献
8.
为了从渗流量和渗透稳定角度深入研究膨润土防水毯搭接处的防渗问题,开发了由压力控制系统和模型试验系统两部分组成的具有施加法向应力作用的接触面渗流试验装置,建立了真实模拟设计提出的防水毯铺设工序的渗流搭接物理试验方法,并通过不同工况下的膨润土防水毯搭接渗流试验,初步探讨了搭接处膨润土发挥防渗作用的最佳状态。结果表明:防水毯的搭接宽度宜大于30 cm;搭接处的膨润土添加量最好在4000~5000 g/m2之间选取;取防水毯规格型号为5000 g/m2能满足防渗体的要求;围压大小和加载路径对搭接处的渗透性影响均较大,若围压先增大然后再减小,搭接处仍能保持较为密实,其渗透性变化不大。 相似文献
9.
《Geotextiles and Geomembranes》2020,48(6):962-972
The internal shear strength of a geosynthetic clay liner (GCL) within composite liner systems is crucial for the stability of landfills and should be carefully considered in the design. To explore the shear strength and failure mechanism of the extensively used needle-punched GCL, a series of displacement-controlled direct shear tests with five normal stress levels (250–1000 kPa) and eight displacement rates (1–200 mm/min) were conducted. The shear stress to horizontal displacement relationships exhibit well-defined peak shear strengths and significant post-peak strength reductions. The monitoring results of the thickness change indicate that the degree of volumetric contraction is related to the reorientation of fibers and dissipation of pore water pressure. Furthermore, the peak and residual shear strengths both depend on the displacement rate because of the rate-dependent tensile stiffness of needle-punched fibers and shear strength of the soil/geosynthetic interface. Through additional tests and lateral comparison, it was discovered that the shear behavior of sodium bentonite, degree of hydration, and pore water pressures all affect the shear mechanisms of the NP GCL. In particular, the failure mode transfers from fiber pullout to fiber rupture with the increase in water content as the hydrated bentonite particles facilitate the stretching of needle-punched fibers. 相似文献
10.
Chuang Yu Yu Yang Ze-xiang Wu Ji-fang Jiang Rao-ping Liao Yong-feng Deng 《Geotextiles and Geomembranes》2021,49(2):413-419
Geosynthetic clay liners (GCLs), which have a very low permeability to water and a considerably high self-healing capacity, are widely used in liner systems of landfills. In this study, a series of experimental tests were carried out under complex conditions on typical commercial GCLs from China. In particular, the effects of pH values and lead ions (Pb2+) were tested in addition to other factors. The swelling properties of natural bentonite encapsulated between geotextile components in the GCLs were tested first. The swelling capacity was reduced rapidly at pH values < 3 and concentrations of Pb2+ >40 mM. Permeability tests on GCLs with different concentrations of lead ions were then performed by using the self-developed multi-link flexible wall permeameter, and data showed that increases in lead ion concentrations greatly improved the permeability. Finally, self-healing capacity tests were conducted on needle-punched GCLs under different levels of damage. Results showed that the GCLs have a good self-healing capacity with small diameter damage holes (2 mm, close to three times the original aperture), but with a damage aperture larger than 15% of the sample area, the self-healing capacity could not prevent leakage; hence, in certain situations it will be necessary to repair the damage to meet the anti-seepage requirement. 相似文献
11.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor. 相似文献
12.
Yi Lu Hossam Abuel-Naga Eng-Choon Leong Abdelmalek Bouazza Peter Lock 《Geotextiles and Geomembranes》2018,46(6):707-714
The effect of water salinity on the water retention curve of geosynthetic clay liners (GCLs), under constant volume condition is examined. The results indicate that at a constant gravimetric moisture content the total suction increases as the salinity of the wetting liquid increases. Furthermore, the difference in total suction between the GCL hydrated by saline water and distilled water is greater than the difference in the osmotic potential of the wetting water. This behaviour is possibly caused by the matric suction being affected by the expected chemically induced pore size change of the bentonite component of the GCL. 相似文献
13.
14.
In municipal solid waste landfills, a triple-layer composite liner consisting of a geomembrane liner (GML), a geosynthetic clay liner (GCL) and a compacted clay liner (CCL) is commonly used at the landfill bottom to isolate the leachates from surrounding environment. This paper presents a numerical investigation of the effect of liner consolidation on the transport of a volatile organic compound (VOC), trichloroethylene (TCE), through the GML/GCL/CCL composite liner system. The numerical simulations were performed using the model CST3, which is a piecewise linear numerical model for coupled consolidation and solute transport in multi-layered soil media and has been extensively validated using analytical solutions, numerical solutions and experimental results. The performed numerical simulations considered coupled consolidation and contaminant transport with representative geometry, material properties, and applied stress conditions for a GML/GCL/CCL liner system. The simulation results indicate that, depending on conditions, consolidation of the GCL and CCL can have significant impact on the transport results of TCE (i.e., TCE mass flux, cumulative TCE mass outflow, and distribution of TCE concentration within the GCL and CCL), both during the consolidation process and long after the completion of consolidation. The traditional approach for the assessment of liner performance neglects consolidation of the GCL and CCL and fails to consider the consolidation-induced transient advection and concurrent changes in material properties and, therefore, can lead to significantly different results. These differences for with and without the consolidation effects can range over several orders of magnitude. The process of consolidation-induced contaminant transport is complex and involves many variables, and therefore case-specific analysis is necessary to assess the significance of liner consolidation on VOC transport through a GML/GCL/CCL composite liner system. 相似文献
15.
《Geotextiles and Geomembranes》2020,48(6):950-961
In composite liners made of geomembrane (GMB)-geosynthetics clay liners (GCLs), maintaining bentonite in the GCL in a suitably hydrated state is critical for their performance. Hydration of GCL from subsoil, following industry best practice, is time consuming and conditional on suitable water chemistry in subsoil. In addition, under thermal gradients, dehydration occurs, with moisture migrating downwards to the subsoil, leading to the development of cracks in the bentonite and hence loss of performance.Two novel ideas are proposed in this paper, namely hydration of GCLs by artificial irrigation and hydraulic separation of the liner system from the underlying subsoil. Three new composite liner designs allowing for actively irrigating a geosynthetic clay liner (GCL) through a geocomposite layer were investigated. In two of the three designs, the hydraulic connection between the GCL and the subsoil was broken by placing an additional GMB between them. The new designs were tested in column experiments under 20 kPa overburden pressure and temperatures of up to 78 °C applied to the top of the liner. The performances of the new designs were compared to that of a standard GCL-GMB design where GCL was allowed to hydrate from a well-graded sandy subsoil. Three scenarios for the staging of hydration and thermal load application were investigated.Under active hydration of the composite liners, it took less than 14 days for the GCLs to reach a gravimetric water content ω of 110–130%, compared to 49 days taken to reach ω~95% under hydration from the subsoil. GCLs in the new designs in which the hydraulic connection with the subsoil was broken, remained well-hydrated (ω>100%) after 14 days of heating and no cracks appeared in the bentonite. On the other hand, the GCL in the conventional design experienced severe desiccation under the same conditions. The new designs hence offer a viable solution to the problem of slow hydration and/or thermal desiccation of GCLs. 相似文献
16.
The physical response of a 1.5-mm-thick, high-density polyethylene geomembrane (GM) is reported when placed on top of a needle-punched geosynthetic clay liner (GCL), buried beneath 50-mm coarse gravel and subjected to vertical pressure in laboratory experiments. Local strains in the geomembrane caused by indentations from the overlying gravel and deflections of a wrinkle in the geomembrane are quantified. A peak strain of 20% was calculated when a flat geomembrane was tested without a protection layer at an applied vertical pressure of 250 kPa. Strains were smaller with a nonwoven needle-punched geotextile protection layer between the gravel and geomembrane. Increasing the mass per unit area of the geotextile up to 2200 g/m2 reduced the geomembrane strain. However, none of the geotextiles tested were sufficient to reduce the geomembrane strain below an allowable limit of 3%, for the particular 50-mm gravel tested and when subjected to a vertical pressure of 250 kPa. Increasing the initial GCL water content and reducing the stiffness of the foundation layer beneath the GCL were found to increase the geomembrane strains. These local strains were greater when a wrinkle was present in the geomembrane. The wrinkle in the geomembrane experienced a decrease in height and width. The wrinkle deformations lead to larger pressures beside the wrinkle and hence producing larger local strains. A 150-mm-thick sand protection layer was effective in limiting the peak strain to less than 0.3% even with a wrinkle in the geomembrane, at a vertical pressure of 250 kPa. 相似文献
17.
Abdelmalek Bouazza Mohammad Asgar Ali R. Kerry Rowe Will P. Gates Abbas El-Zein 《Geotextiles and Geomembranes》2017,45(5):406-417
The hydrothermal behaviour of single and double composite liners subjected to elevated temperatures is examined. Particular interest is given to the effect of the presence of wrinkles in the geomembrane (GMB) as well as defects, and the existence of a gap between the primary and the secondary liners caused by the presence of a leak detection system. Heat flow resulting from elevated temperature was found to be mainly influenced by the size of the air-filled gaps present within the composite lining systems. The larger the air-filled gap size, the lower was the heat flow through a barrier system. The presence of a leak detection layer (i.e., large air-filled gap) and GMB layers were found to be the primary factors to reduce heat flow substantially through the lining systems. Therefore, the presence of a leak detection layer combined with a secondary GMB can improve the overall thermal insulation capacity of a double liner system, minimise heat flow through the secondary liner and offer the possibility of protecting the GCL (if present) and the subgrade from possible heat induced drying/desiccation. A leak in the geomembrane can minimise the gain in thermal insulation. However, this effect can be reduced if the liquid is regularly pumped out. 相似文献
18.
The composite liner system consisting of geomembrane (GMB) and geosynthetic clay liner (GCL) has been widely used in landfills. Although there have been a lot of studies on the monotonic shear behavior of GMB/GCL composite liner, the dynamic test data are still very limited and consequently, the dynamic shear mechanism is not clear. A series of displacement-controlled cyclic shear tests were conducted to study the shear behavior of GMB/GCL composite liner, including the shear stress versus horizontal displacement relationships, backbone curves, and shear strengths. Hysteretic loops in the shape of parallelogram were obtained and equivalent linear analyses revealed that the secant shear stiffness decreased and the damping ratio increased with the rise in loading cycles. According to the test results, it is generally acceptable to predict the dynamic peak strength of a GMB/GCL composite liner with its static strength envelope. Furthermore, the dynamic softening mechanism and rate-dependent shear stiffnesses were well described by the proposed equations, which also facilitate the accurate modeling of the cyclic shear behavior. 相似文献
19.
Genaro Gonzalo Carnero-Guzman Abdelmalek Bouazza Will P. Gates R. Kerry Rowe Rebecca McWatters 《Geotextiles and Geomembranes》2021,49(1):196-209
This paper examines the hydration/dehydration behaviour of geosynthetic clay liner (GCL) under polar conditions for four simulated conditions experienced at Australia's Casey Station in Antarctica: (a) hydration during summer, (b) dehydration during a winter-summer cycle, (c) hydration through a fine Antarctic soil, and (d) hydration through a coarse Antarctic soil. Hydration during the summer is found to occur if there is direct contact with the water table. In contrast, the low relative humidity of the environment tends to dehydrate the GCL along a path that depends on the field conditions the GCL is exposed to. Hydration from either fine or coarse Antarctica soil is function of the original gravimetric water content of the subgrade soil and its grain size distribution as well as the low relative humidity prevailing in Antarctica. 相似文献
20.
A study was conducted to investigate (1) physicochemical factors that influence polymer elution from GCLs containing a blend of bentonite and linear (water-soluble) polymer (LPB GCLs) and (2) the mechanism that controls the chemical compatibility of LPB GCLs when polymer elutes. A series of hydraulic conductivity (k), free swell and viscosity tests were performed on a commercial LPB GCL using DI water, varying concentrations of NaCl and CaCl?. Comparable tests were also performed on a conventional bentonite (CB) GCL containing the same untreated bentonite and the same physical properties as the LPB GCL. The LPB GCL showed improved swelling and hydraulic performance compared to the CB GCL when permeated with salt solutions. Total organic carbon analysis of the effluents showed that polymer eluted from the LPB GCL regardless of the permeant solution. However, the rate at which polymer eluted increased as the concentration and valence of the dominant cation increased. The rate at which polymer eluted also increased with hydraulic gradient. The mass of polymer retained inside the GCL matrix did not correlate with the k of the LPB GCL. Free swell tests coupled with chemical analysis suggest that, the improved chemical compatibility of the LPB GCL was due to the ability of the polymer to scavenge cations from the solution which allows the bentonite to undergo adequate swelling during the initial hydration period. Analogous to water-prehydrated CB GCLs, the dispersed structure of the bentonite fabric and increased adsorbed water molecules attained during initial swelling controls the k of the LPB GCL when polymer elutes. 相似文献