首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Bio‐based polymers from vegetable oils are excellent alternatives to petroleum‐based resins for both environmental and economic reasons. A detailed understanding of the cure behavior of bio‐based polymers is essential to optimize cure schedules and the final properties of the polymers. In this work, the cure of newly developed linseed oil‐based thermosetting resins, synthesized using Grubbs' first‐generation catalyst and a bis‐norbornadiene cross‐linking agent by ring‐opening metathesis polymerization, is characterized using differential scanning calorimetry (DSC) and parallel plate oscillatory rheometry. RESULTS: Experimental results reveal that the rate of cure increases and the gel time decreases with increasing cross‐linker loading; however, the activation energy of the cure does not vary systematically with cross‐linker loading. Phenomenological reaction models are used to describe the dynamic DSC measurements and to determine the kinetic parameters which facilitate cure predictions under isothermal conditions. CONCLUSION: This work demonstrates that the cure kinetics of a linseed oil‐based thermosetting resin can be controlled by varying the cross‐linker loading. Furthermore, the kinetic parameters and cure rates at any cross‐linker loading for this system can be described by a simple autocatalytic reaction model which facilitates development of cure schedules. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Poly(adipic anhydride) (PAA) was prepared by the ring‐opening polymerization of adipic anhydride (AA) initiated by potassium poly(ethylene glycol)ate. The effects of various factors, such as the amount of initiator, concentration of the monomer, reaction time and temperature, and polarity of the solvent on the polymerization were investigated. The crude polymerized product was a mixture of PAA homopolymer and poly(ethylene glycol)–poly(adipic anhydride) block copolymer, as confirmed by 1H‐NMR and gel permeation chromatography. Chain‐transfer reactions occurred intensively for the AA polymerization in both the nonpolar solvent toluene and the polar solvents CHCl3 and tetrahydrofuran, which predominantly determined the molecular weight and the monomer conversion for the polymerized product. The lower monomer conversion in toluene was ascribed to a lower livingness for the initiator in the nonpolar solvent when compared with other two, polar solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2194–2201, 2003  相似文献   

3.
Porous polymeric monolithic supports were prepared via electron beam‐triggered free radical polymerization using a mixture of ethyl methacrylate and trimethylolpropane triacrylate in 2‐propanol, 1‐dodecanol and toluene. Bicyclo[2.2.1]hept‐5‐en‐2‐ylmethyl acrylate (1) was grafted onto these monolithic supports in a spatially resolved way with the aid of masks using both electron beam‐ (EB) and UV‐triggered free radical polymerization. The thus immobilized norborn‐2‐ene‐containing graft polymers were further treated with the 2nd‐generation Grubbs initiator, i.e., RuCl2(PCy3)(IMesH2)(CHPh) (4) (IMesH2 = 1,3‐dimesitylimidazolin‐2‐ylidene), and then reacted with bicyclo[2.2.1]hept‐5‐en‐2‐ylmethyl pyrene‐1‐carboxylate (2). Alternatively, monoliths completely grafted with poly‐ 1 were surface grafted with 2 in a spatially resolved way in the presence of a latent, UV‐triggerable precatalyst, i.e., [Ru(IMesH2)(CF3COO)(t‐BuCN)4+ CF3COO?] (5). Finally, to demonstrate the utility of this chemistry, a 2nd‐generation Grubbs initiator‐based approach was used to prepare a trypsin‐functionalized monolith‐containing chip device that allowed for the online digestion of N‐α‐benzoyl‐L ‐argininethylester hydrochloride. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Polytetrahydrofuran monomethacrylate (MA‐PTHF) macromonomer was prepared by cationic ring‐opening polymerization(CROP) of tetrahydrofuran (THF) using boron trifloride etherate (BF3 · OEt2) as initiator and epichlorohydrin (ECH) as promoter. Two kinds of transfer agents were used: methacrylic acid (represented as TA1), and a mixture of methacrylic acid and sodium methacrylate (represented as TA2). The effects of polymerization conditions on molecular weight and molecular weight distribution of macromonomers were studied in this article, when the composition of reactants was kept constant. Under the same conditions, the molecular weight of macromonomer using TA2 is lower than that using TA1, which indicates that TA2 is more active than TA1. The molecular weight of MA‐PTHF macromonomer varies with the polymerization time before transfer agents were added (T1), but molecular weight distribution remains constant. When T1 is limited in 30 min, the apparent number‐average molecular weight of MA‐PTHF increases significantly with the increase of T1, and ranges from 5000 to 18,000. Hence, the molecular weight of MA‐PTHF macromonomer can be controlled by varying T1. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 810–815, 2000  相似文献   

5.
The polymerization of norbornadiene (NBD) initiated by a novel ruthenium (Ru)(II) complex ( 3 ) containing 1,1′‐pyridine‐2,6‐diylbis[3‐(dimethylamino)prop‐2‐en‐1‐one] ( 1 ) as ligand has been investigated. Ru complexes exhibit more catalytic activity in the ring‐opening metathesis polymerization (ROMP) of NBD when activated with trimethylsilyldiazomethane (TMSD). The influence of the various experimental parameters such as reaction time and temperature, nature of the solvent and catalyst, ratio of the NBD/Ru, and TMSD addition has been investigated. The polymers have been obtained in high yields with a relatively low polydispersity index for ROMP and a high $ \bar M_n $ and $ \bar M_w $ values in a monomodal distribution. Their structures have been determined by means of FTIR and 1H‐NMR spectroscopy. Thermal properties have been determined via thermogravimetric analysis and DTG methods. The NBD polymerization results that initiated by Ru‐based catalyst coordinated to amine ligand have been compared to initiated by [RuCl2(p‐cymene)]2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
A series of macrocyclic(arylene sulfide) oligomers were synthesized by reaction of 4,4′‐oxybis(benzenethiol) with a number of difluoro compounds in dimethylformamide (DMF) in the presence of anhydrous K2CO3 under high dilution conditions. The difluoro compound can be 4,4′‐difluorobenzophenone, bis(4‐fluorophenyl)sulfone or 1,3‐bis(4‐fluorobenzoyl)benzene. Detailed structural characterization of these oligomers by matrix‐assisted laser desorption and ionization‐time of flight‐mass spectroscopy (MALDI‐TOF‐MS) demonstrated their cyclic nature. The MALDI‐TOF‐MS technique has proved to be a powerful tool to analyze these cyclics. These cyclic oligomers are amorphous and highly soluble in DMF and N,N′‐dimethyl acetamide. Moreover, these cyclic(arylene sulfide) oligomers readily underwent ring‐opening polymerization in the melt at 285 °C in the presence of 2,2′‐dibenzothiazole disulfide, affording linear, high molecular weigh poly(aromatic sulfide)s. These polymers are insoluble in most common solvents. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Exfoliated poly(4, 4′‐oxybis(benzene)disulfide)/vermiculite (POBDS/VMT) nanocomposites were successfully synthesized via in situ melt intercalation of cyclo(4, 4′‐oxybis(benzene)disulfide) oligomers (COBDS) into octadecylammonium‐exchanged VMT (organo‐VMT). The POBDS/VMT nanocomposites were melt fabricated in a two‐step process. First, the COBDS/VMT nanocomposite precursor was fabricated by melt delaminating organo‐VMT with COBDS at a temperature slightly higher than its melting point. Subsequently, exfoliated POBDS‐VMT nanocomposites can be prepared in situ via instant melt ring‐opening polymerization of the COBDS‐VMT nanocomposite precursor. The nanoscale dispersion of VMT layers within POBDS polymer was confirmed by X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. High molecular weight POBDS polymer was formed in a few minutes at the same time as the nanocomposite formation. The results of dynamic mechanical analysis showed that the storage modulus and glass transition temperature of the nanocomposites are much higher than those of the POBDS matrix, even with a very small amount of VMT addition. This methodology provides a potential approach to synthesize high‐performance polymer/clay nanocomposites. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
BACKGROUND: In comparison with group 6 transition metals, such as tungsten and molybdenum, and group 8 metal ruthenium, group 5 metal‐based catalysts for ring‐opening metathesis polymerization (ROMP) have remained much less studied. The few reported ROMP catalysts of group 5 metals require multiple reaction steps to be synthesized, and are highly sensitive to air and moisture. RESULTS: A series of pentavalent tantalum and niobium complexes having catecholato, tropolonato, hinokitiolato, biphenolato and binaphtholato ligands were prepared and their catalytic activities for the ROMP of norbornene (NBE) were studied in the presence of trialkylaluminium as a co‐catalyst. Among these complexes, the tantalum complexes showed high activity upon activation with Bui3Al. In sharp contrast, the niobium complexes were effectively activated with Me3Al. The polymers obtained with these complexes had high molecular weights (Mn > 105 g mol−1) and relatively narrow molecular weight distributions (Mw/Mn ≈ 2). CONCLUSION: We found that easily accessible and relatively stable tantalum and niobium complexes with such chelating O‐donor ligands showed high catalytic activity for ROMP of NBE depending on the kind of co‐catalyst. These findings could contribute to future development of ROMP catalysts. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
Well‐crystal macrocyclic (arylene thioether ketone) oligomers were synthesized under high dilution condition by the reaction of Na2S with bis(4‐fluoro‐phenyl)‐methanone in 1‐methyl‐pyrrolidone (NMP). The oligomers were fully characterized by Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra (MALDI‐TOF‐MS), high‐pressure liquid chromatography (HPLC), gel permeation chromatography (GPC), 1H NMR, 13C‐NMR, and differential scanning calorimetry (DSC). According to DSC studies, uncatalyzed and rapid ring‐opening polymerization (ROP) of the oligomers took place instantly when they were heated to melting point. Extracted by dichloro‐methane, the obtained polymer neither loses any weight nor dissolves in boiling 1‐chloro‐ naphthalene. These facts indicated that there are no residual oligomers within the resultant polymer. The as‐prepared oligomers could be potentially used as high‐temperature hot‐melt adhesive at a high temperature > 350°C, and matrices for high‐performance composites and nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 161–166, 2006  相似文献   

10.
A zinc‐based catalyst zinc bis[bis(trimethylsilyl)amide] was used for the polymerization of cyclic esters including L ‐lactide (L ‐LA) and 2‐methyl‐2‐carboxyl‐propylene carbonate (MBC). The polymerization of L ‐lactide in THF could be carried out successfully under mild conditions in very short time by using the zinc catalyst and alcohols as the initiators. Kinetic study in solution polymerization prooved the polymerization has high monomer conversion degree close to 100% and the molecular weight of the resulting polyester has linear increase with the increase of [M]0 /[I] (molar ratio of monomer to initiator). Sequential polymerization of L ‐LA and MBC in THF also showed high MBC conversion of 94% with a narrow molecualr weight maintained, indicating a living nature of this polymerization. The zinc catalyst system has also been used for the L ‐LA bulk polymerization with a high monomer conversion. 13C NMR indicated the polymer possesses high regioregularity and the minor regioirregular component was owing to the D ‐LA in the monomer inserted into the polymer mainchain during the transesterifcation. Interaction between monomer and zinc catalyst has been found to be a key factor to sustain a homogenous solution during the initiating procedure. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The rare earth compound, scandium trifluoromethanesulfonate [Sc(OTf)3], has been used as a water‐tolerant catalyst for the synthesis of star‐shaped poly(ε‐caprolactone)s (SPCLs) with trimethylol propane as trifunctional initiator in solvent at 40°C. Triarm SPCLs have been successfully prepared. The molar mass of SPCLs were determined by end‐group 1H NMR analyses, which could be well controlled by the molar ratio of the monomer to the initiator, and were independent of the amount of Sc(OTf)3 used. Differential scanning calorimetry analyses suggested that the maximal melting point, the cold crystallization temperature, and the degree of crystallinities of SPCLs increased with the increasing of the molar mass and were lower than the linear poly(ε‐caprolactone) (LPCL) with similar molar mass. Furthermore, polarized optical microscopy indicated that LPCL showed fast crystallization rate and good spherulitic morphology with apparent Maltese cross pattern, whereas SPCLs exhibit much lower crystallization rate and poor spherulitic morphology. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
This study focuses on the possibility of improving performance properties of polydicyclopentadiene (PDCPD) nanocomposites for engineering applications using nanoparticles. In this article, molybdenum disulfide/polydicyclopentadiene (MoS2/PDCPD) nanocomposites have been prepared by in situ ring‐opening metathesis polymerization using reaction injecting molding (RIM) process. To enhance the interfacial adhesion between the fillers and PDCPD matrix, the surface modified MoS2 nanoparticles hybridized with dialkyldithiophosphate (PyDDP) were successfully prepared by in situ surface grafting method. The effect of low MoS2 loadings (<3 wt %) on the mechanical and tribological behaviors of PDCPD was evaluated. The results indicated that the friction coefficient of the MoS2/PDCPD nanocomposites was obviously decreased and the wear resistance of nanocomposites was greatly improved by the addition of PyDDP‐hybridized MoS2 nanoparticles; meanwhile, the mechanical properties were also enhanced. The MoS2/PDCPD nanocomposites filled with 1 wt % PyDDP‐hybridized MoS2 exhibited the best mechanical and anti‐wear properties. The friction coefficient was shown to decrease by more than 40% compared to pure PDCPD by incorporating just 1 wt % hybridized MoS2 nanoparticles, and modest increase in modulus and strength was also observed. The reinforcing and wear‐resistant mechanisms of MoS2/PDCPD nanocomposites were investigated and discussed by scanning electron microscopy. The well interfacial compatibility between the particle/matrix interfaces played an important role for the improved mechanical and tribological properties of MoS2/PDCPD nanocomposites in very low MoS2 loadings. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
One‐step synthesis of star copolymers by reversible addition–fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel dual initiator is reported. Triarm block copolymers comprising one polystyrene (or polyacrylamide) arm and two poly(β‐butyrolactone) arms were synthesized in one‐step by simultaneous RAFT polymerization of styrene (St) (or acrylamide, designated as AAm) and ROP of β‐butyrolactone (BL) in the presence of a novel trifunctional initiator, 1,2‐propanediol ethyl xanthogenate (RAFT‐ROP agent). This dual initiator was obtained through the reaction of 3‐chloro‐1,2‐propanediol with the potassium salt of ethyl xanthogenate. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The characterization of the products was achieved using Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H‐NMR), 13C‐nuclear magnetic resonance (13C‐NMR), Gas chromatography–mass spectrometry (GC–MS), gel‐permeation chromatography (GPC), thermogravimetric analysis (TGA), and fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Fully degradable cationic poly(ester‐phosphoester)s with antibacterial properties were prepared by a combination of ring‐opening polymerization (ROP) and “click” reaction. First, poly(ester‐phosphoester)s‐bearing alkynyl groups were synthesized by the ring‐opening copolymerization of 2‐(2‐propynyloxy)?2‐oxo‐1,3,2‐dioxaphospholane (propynyl ethylene phosphate, PEP) and ε‐caprolactone (CL) using lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s (La(DBMP)3) as the catalyst. 2‐Azido‐N,N‐dimethylethanamine (DMEAN3) was then attached to the copolymers by “click” reaction, resulting in poly(ester‐phosphoester)s with pendant tertiary amines. After the quaternization reactions between the copolymer and various alkyl bromides, cationic poly(ester‐phosphoester)s containing ammonium groups were obtained. Optical density (OD) measurement shows that the cationic copolymers have excellent antibacterial activity, which makes them potential candidates as biomaterials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42647.  相似文献   

15.
A series of macrocyclic(arylene multisulfide) oligomers were synthesized under high dilution conditions by reacting diphenyl ether/diphenyl/diphenyl disulfide/diphenyl methane with dichloro disulfide in the presence of a trace amount of iron powder by a one‐step reaction. From MALDI‐TOF mass spectra, it was established that the repeating units of the cyclization ranged from two to seven and the unit of macrocyclic(arylene multisulfide) oligomers had one to seven sulfur atoms. The macrocyclic oligomers readily underwent ring‐opening polymerization in the melt, resulting in linear, high molecular weight polymultisulfides. DSC thermograms demonstrated that the four polymultisulfides, derived from the macrocyclic(arylene multisulfide) oligomers, are amorphous in nature. The macrocyclic(arylene multisulfide) oligomers and polymers were analyzed by MALDI‐TOF‐MS, IR, HPLC, NMR, DSC, and TGA methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 735–741, 2004  相似文献   

16.
Predominantly syndiotactic poly((R,S)‐β‐hydroxybutyrate) (PHB) was synthesized by ring‐opening polymerization of racemic β‐butyrolactone with distannoxane derivatives as catalysts. We have studied the polymerization of (R,S)‐β‐BL using distannoxane derivatives as catalysts and the effects of polymerization time on crude yield and molecular weight of the polymers obtained. Then, a more detailed study of the characterization of polymers obtained using hydroxy‐ and ethoxy‐distannoxanes was performed. 13C NMR spectroscopy resolved stereosequences in synthetic PHB at the diad level for the carbonyl carbon and at the triad level for the methylene carbon. These analyses show that distannoxane catalysts produce preferentially syndiotactic polyesters (syndiotactic diads fraction from 0.56 to 0.61). Triad stereosequence distribution of PHB samples agrees favourably with the Bernoullian statistical model of chain‐end control, where ideally Φ = 4(mm) (rr)/(mr + rm)2 = 1 for perfect chain‐end control. Polymer samples synthesized from distannoxane catalysts are composed of two distinct transition endotherm components with peak temperatures of approximately 42 °C and 75 °C. The formation of two melting endotherms may be due to the presence of two different crystalline structures. © 2000 Society of Chemical Industry  相似文献   

17.
Kinetics of the anionic ring‐opening polymerization of octamethylcyclotetrasiloxane (D4) in bulk initiated by potassium isopropoxide was studied. Several promoters including N‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylformamide (DMF), and diglyme were used. It is indicated that the reactions are first‐order in D4 during the initial stage of polymerization. The polymerization rate of D4 is influenced by a number of factors, such as the nature of promoters, the molar ratio of promoter to initiator (Cp/Ci ratio), and the reaction temperatures. With the use of NMP as promoter, the polymerization rate constant at 30°C is 10.482 h?1 with the Cp/Ci ratio equal to 3.0. As the Cp/Ci ratio increases, the polymerization rate constant increases sharply and the cyclic oligomers content in polymer decreases evidently. The back‐biting reaction that leads to the formation of decamethylcyclopentasiloxane (D5) occurred in the polymerization of D4. The rate of the D5 formation relatively to the rate of D4 conversion increases with the conversion of D4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3510–3516, 2006  相似文献   

18.
A polystyrene (PS)‐b‐polylactide (PLA) block copolymer was prepared from the combination of atom transfer radical polymerization and ring‐opening polymerization with commercially available 2,2,2‐tribromoethanol as a dual initiator in a sequential two‐step procedure. Hydroxyl‐terminated polystyrene (PS‐OH)s with various molecular weights were first prepared with polydispersity indices lower than 1.3; these provided valuable macroinitiators for the polymerization of D,L ‐lactide. A block copolymer with a composition allowing the formation of hexagonally packed PLA cylinders in a PS matrix was then obtained. The PS‐b‐PLA thin films revealed, after vapor solvent annealing, a hexagonally packed organization of the PLA cylinders, which was oriented perpendicularly to the surface of the film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Ring‐opening metathesis polymerization of dicyclopentadiene catalyzed by TiCl4 · 2L/CH3Li system [where L is tetrahydropyran (1), dioxane, 2,5‐dimethylfuran, or tetrahydrofurfyl alcohol] is reported. The obtained polymer was characterized by IR and 1H‐NMR. These catalytic systems effectively promoted the polymerization reaction. Seven influencing factors are discussed. When the aging temperature was 0°C, the aging time was 90 min, the polymerization temperature was 60°C, Li/Ti was 1.5–2, and the monomer/catalyst molar ratio ranged between 30 and 50, the polymerization reaction catalyzed by complex 1 yielded better results within a shorter period of time. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 662–666, 2001  相似文献   

20.
Epoxidized soybean oil (ESO) was converted to a polysoap (PESO) via a two‐step synthetic procedure of catalytic ring‐opening polymerization, followed by hydrolysis (HPESO) with a base. Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst concentration. In addition, the counter ion chemistry was varied by changing the base used for saponification. The PESO and HPESO products were carefully characterized and identified using a combination of FTIR, 1H‐NMR, solid state 13C‐NMR, and GPC. The effect of HPESO polysoaps on the surface tension of water and the interfacial tension of water‐hexadecane was investigated as a function of HPESO concentration, molecular weight, and counter ion chemistry. HPESO polysoaps were effective at lowering the surface tension of water and the interfacial tension of water‐hexadecane and displayed minimum values in the range of 20–24 and 12–17 dyn/cm, respectively, at concentration of 200–250 μM. Water‐hexadecane interfacial tension was also calculated from measured surface tension data using the Antonoff, harmonic mean (HM), and geometric mean (GM) methods. Measured values agreed well with those calculated using the HM and GM methods, but not the Antonoff method. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号