首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flow in an idealized geosynthetic clay liner (GCL) containing bentonite comprised of equisized and equispaced square granules was simulated using a hydrodynamic model to quantitatively evaluate the premise that the hydraulic conductivity of GCLs diminishes as the bentonite granules hydrate and swell into adjacent intergranular pores, creating smaller and tortuous intergranular flow paths. Predictions with the model indicate that hydraulic conductivity decreases as granules swell and intergranular pores become smaller, and that greater granule swelling during hydration is required to achieve low hydraulic conductivity when the bentonite is comprised of larger granules, or the bentonite density is lower (lower bentonite mass per unit area). Predictions made with the model indicate that intergranular pores become extremely small (<1 μm) as the hydraulic conductivity approaches 10−11 m/s. These outcomes are consistent with experimental data showing that GCLs are more permeable when hydrated and permeated with solutions that suppress swelling of the bentonite granules, and that the hydraulic conductivity of GCLs with bentonite having smaller intergranular pores (e.g., GCLs with smaller bentonite granules, more broadly graded particles, or higher bentonite density) is less sensitive to solutions that suppress swelling.  相似文献   

2.
The desiccation and subsequent hydraulic conductivity of both a standard (GCL_A) and polymer-enhanced (GCL_B) Na-bentonite GCL hydrated from a well-graded sandy subsoil under 20 kPa, then subjected to a thermal gradient, and finally rehydrated and permeated with distilled water or 0.325 mol/L Na+ synthetic brine are reported.With moderate temperature of 40 °C applied to the top of the liner, GCL_B experienced less cracking than GCL_A, but this advantage disappeared when temperatures increased. Both desiccated specimens of GCL_A and B showed significant self-healing when permeated with distilled water and their hydraulic conductivities quickly reduced to around 10−11 m/s at 20 kPa upon rehydration. However, when GCL_B desiccated specimens were permeated with the synthetic brine, their hydraulic conductivities were found to be one to two orders of magnitude higher than corresponding values obtained with distilled water. On the other hand, GCL_A (with no polymer treatment) maintained its hydraulic conductivities at the same level obtained with distilled water. It is concluded that caution should be exercised in using polymer-bentonite in applications in which GCLs are subjected to significant thermal gradients unless there is data to show they are resistant to thermal effects.  相似文献   

3.
Geosynthetic clay liners (GCLs) are widely used in landfill and heap-leach facility cover system for mitigating rainfall infiltration and gas migration into atmosphere. Laboratory tests were conducted to investigate methane diffusion and advection through GCLs. Gas permeability coefficient of GCL for the case with moisture content = 47.5% is one and two orders of magnitude greater than the cases with moisture content = 68.5% and 80.9%, respectively, when 20 kPa vertical stress was applied. The batch adsorption tests indicated that adsorption of methane onto bentonite is negligible. The concentration variation for the adsorption of methane onto bentonite can be neglected. However, methane concentration decreased by 14.2% for the test of methane adsorption onto GCL during the first 2–3 days. This is because methane was adsorbed by the geotextiles rather than by the bentonite in GCL. The large porosity and surface area of geotextiles provide lots of micropores for methane adsorption. Analytical model was then developed to analyze the performance of GCL-based liners system with respect to methane transport. The results indicate that methane emission fluxes for the case with SL + GCL are 7.8 and 5.1 times less than the cases with SL + CCL when the moisture contents were 25.9% and 35.1%, respectively. The methane emission fluxes for both of the SL + GCL and SL + CCL can be neglected when they are fully saturated. GCL is recommended to be used in arid and semi-arid regions rather than CCL. GCL is recommended to be used in arid and semi-arid areas rather than CCL. Advection plays a more important role in methane migration through SL + GCL and SL + CCL than that of diffusion. With moisture contents = 25.9% and 32%, methane emission flux attributed to advection accounts for more than 90% of the total emission flux for both cases of SL + GCL and SL + CCL. With the increase of moisture content of SL, the effectiveness of SL in reducing methane emission increases. The saved space for using GCL + SL composite cover compared with using a single SL cover is 0.7 m when the moisture content equals 25.9%, which is 0.5 m greater than the case when moisture content equals 32%. GMB plays a dominant role in inhibiting methane migration and reducing methane emission flux. When moisture content equals 25.9%, the methane emission fluxes for SL + GMB + GCL and SL + GMB + CCL are 343 times and 2643 times less than the cases with SL + GCL and SL + CCL, respectively.  相似文献   

4.
The hydrothermal behaviour of single and double composite liners subjected to elevated temperatures is examined. Particular interest is given to the effect of the presence of wrinkles in the geomembrane (GMB) as well as defects, and the existence of a gap between the primary and the secondary liners caused by the presence of a leak detection system. Heat flow resulting from elevated temperature was found to be mainly influenced by the size of the air-filled gaps present within the composite lining systems. The larger the air-filled gap size, the lower was the heat flow through a barrier system. The presence of a leak detection layer (i.e., large air-filled gap) and GMB layers were found to be the primary factors to reduce heat flow substantially through the lining systems. Therefore, the presence of a leak detection layer combined with a secondary GMB can improve the overall thermal insulation capacity of a double liner system, minimise heat flow through the secondary liner and offer the possibility of protecting the GCL (if present) and the subgrade from possible heat induced drying/desiccation. A leak in the geomembrane can minimise the gain in thermal insulation. However, this effect can be reduced if the liquid is regularly pumped out.  相似文献   

5.
GCLs containing powdered Na-bentonite treated with different dosages of a proprietary additive intended to reduce the impacts of chemical interactions were permeated with three solutions: a hyperalkaline solution (1 M NaOH and 1.3 mM CsCl) having similar pH to aluminum refining leachate, a 1.3 mM CsCl solution (no NaOH), and DI water. For a given permeant solution, the hydraulic conductivity of both GCLs was similar. Thus, the higher additive dosage had no measureable impact on hydraulic conductivity. Hydraulic conductivity of both GCLs decreased by a factor of approximately 1.5–1.8 during permeation with CsCl in response to osmotic swelling induced by the low ionic strength of the CsCl solution entering the pore space. In contrast, permeation with the NaOH–CsCl solution caused the hydraulic conductivity of both GCLs to increase modestly (<50 times the hydraulic conductivity to DI water), and then level out (or decrease slightly) as a result of reduced osmotic swelling in the interlayer combined with dissolution of the mineral. For the tests conducted with CsCl solution, nearly all of the Cs was adsorbed by the bentonite. In contrast, Cs broke through readily when the NaOH–CsCl solution was used as the permeant solution. Permeation with the NaOH–CsCl solution also increased the sodicity of the bentonite by replacing bound K, Ca, and Mg on the mineral surface.  相似文献   

6.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor.  相似文献   

7.
The results of a project aimed at identifying performance-based indicators that can be used by landfill operators to check the suitability of GCLs for bottom barrier applications are presented. The general methodology consisted of performing detailed characterization of the prevalent GCLs used in France for landfill barrier applications, before and after prolonged contact with several fluids during oedo-permeameter tests. Results of mineralogical analysis illustrate the variety of composition of the tested bentonites, which in addition to smectite clay contain a large number of accessory minerals. For one of the GCLs tested, the proportion of smectite was lower than 30 wt%, which highlights the limitations of the generic designation “bentonite” when referring to GCLs destined to landfill applications. Results also underline the correlation between cation exchange capacity (CEC) and smectite content, the correlation between free swell volume and proportion of exchangeable sodium and the influence of the bentonite's calcium carbonate fraction on hydraulic conductivity. Transmission electron microscopy (TEM) photographs illustrate the effect of cation exchange on clay microstructure, with the formation of clay particles which lead to increased hydraulic conductivity. The exchange is also documented by exchangeable cation analyses. Results of isotopic analyses indicate that information provided by suppliers with respect to the “natural” versus “activated” nature of the bentonite, may sometimes be arbitrary and related to factors that are very difficult to check in practice, even by the suppliers themselves. This further underlines the need for performance-based indicators, rather than generic designations, to provide objective information regarding GCL suitability for landfill applications. Several performance-based indicators are selected in order to provide practical tools for checking the suitability of sodium-bentonite GCLs in bottom barrier applications and limit values are proposed.  相似文献   

8.
The results of a comprehensive testing program conducted to evaluate the hydraulic conductivity (k) of two geosynthetic clay liners (GCLs) considered as a liner component for a tailings impoundment at a proposed zinc and copper mine are reported. The two GCLs were permeated with a relatively low ionic-strength ground water (GW) from the mine site and two electrolyte solutions, a process water (PW) and a simulated leachate (SL), with chemical compositions consistent with those expected during operation of the impoundment. A total of 22 flexible-wall tests were performed to determine the effects of prehydration with the GW, type of GCL, type of permeant liquid, and duration of the back-pressure stage of the test. The k values for both GCLs permeated with the GW were 1.7 × 10−9 cm/s, which is within the range 1–3 × 10−9 cm/s typically reported for GCLs permeated with low ionic-strength liquids, such as deionized water. However, the mean values of k based on permeation of duplicate specimens of both types of GCL with either PW or SL relative to the values of k based on permeation with GW, or k/kw, ranged from a factor of 200 (2.3 orders of magnitude) to a factor of 7600 (3.9 orders of magnitude). Thus, both tailings impoundment solutions had significant adverse impacts on the hydraulic performance of both GCLs. Given the overall range of k/kw values, factors such as prehydration, type of GCL, type of permeant liquid, and duration of back pressure, were relatively insignificant. The results of this study serve to emphasize the need to perform hydraulic conductivity testing using site specific materials.  相似文献   

9.
The effects of the silt aggregation, compaction density, and water content of the subgrade on the hydration of five different geosynthetic clay liner (GCL) products is reported based on a series of laboratory column experiments conducted over a six-year period. GCLs meeting typical specifications in terms of minimum hydraulic conductivity and swell index are hydrated to equilibrium from the same subgrade soil with sufficient cations to cause cation exchange during hydration. It is then shown that the GCL bentonite granularity and GCL structure can have a significant (~four orders of magnitude) effect on hydraulic conductivity under the same test conditions (from 8 × 10−12 m/s for one GCL to 6 × 10−8 m/s for another GCL product). The effect of subgrade water content on the hydraulic performance of GCLs are not self-evident and quite dependent on the bentonite granularity, GCL structure, and permeant. Varying the subgrade water content from 5 to 16% and allowing the GCL to hydrate to equilibrium before permeation led to up to 5-fold difference in hydraulic conductivity when permeated with tap water and up to 60-fold difference when the same product is permeated with synthetic municipal solid waste leachate. When permeated with synthetic leachate, increasing stress from 70 kPa to 150 kPa led to a slight (average 37%; maximum 2.7-fold) decrease in hydraulic conductivity due to a decrease in bulk void ratio. It is shown that hydraulic conductivity is lower for GCLs with a scrim-reinforced geotextile, and/or with finer bentonite. It is shown that selecting a GCL based on the initial hydraulic conductivity and swell index in a manufacturers product sheet provides no assurance of good performance in field applications and it is recommended that designers pay more attention to selection of a GCL and preparation of the subgrade for important projects.  相似文献   

10.
Geosynthetic clay liners (GCLs), which have a very low permeability to water and a considerably high self-healing capacity, are widely used in liner systems of landfills. In this study, a series of experimental tests were carried out under complex conditions on typical commercial GCLs from China. In particular, the effects of pH values and lead ions (Pb2+) were tested in addition to other factors. The swelling properties of natural bentonite encapsulated between geotextile components in the GCLs were tested first. The swelling capacity was reduced rapidly at pH values < 3 and concentrations of Pb2+ >40 mM. Permeability tests on GCLs with different concentrations of lead ions were then performed by using the self-developed multi-link flexible wall permeameter, and data showed that increases in lead ion concentrations greatly improved the permeability. Finally, self-healing capacity tests were conducted on needle-punched GCLs under different levels of damage. Results showed that the GCLs have a good self-healing capacity with small diameter damage holes (2 mm, close to three times the original aperture), but with a damage aperture larger than 15% of the sample area, the self-healing capacity could not prevent leakage; hence, in certain situations it will be necessary to repair the damage to meet the anti-seepage requirement.  相似文献   

11.
Hydraulic conductivity and swell index tests were conducted on a conventional geosynthetic clay liner (GCL) containing sodium-bentonite (Na-B) using 5, 50, 100, 500, and 1000 mM ammonium acetate (NH4OAc) solutions to investigate how NH4+ accumulation in leachates in bioreactor and recirculation landfills may affect GCLs. Control tests were conducted with deionized (DI) water. Swell index of the Na-B was 27.7 mL/2 g in 5 mM NH4+ solution and decreased to 5.0 mL/2 g in 1000 mM NH4+ solution, whereas the swell index of Na-B in DI water was 28.0 mL/2 g. Hydraulic conductivity of the Na-B GCL to 5, 50, and 100 mM NH4+ was low, ranging from 1.6–5.9 × 10?11 m/s, which is comparable to the hydraulic conductivity to DI water (2.1 × 10?11 m/s). Hydraulic conductivities of the Na-B GCL permeated with 500 and 1000 mM NH4+ solutions were much higher (e.g., 1.6–5.2 × 10?6 m/s) due to suppression of osmotic swelling. NH4+ replaced native Na+, K+, Ca2+, and Mg2+ in the exchange complex of the Na-B during permeation with all NH4+ solutions, with the NH4+ fraction in the exchange complex increasing from 0.24 to 0.83 as the NH4+ concentration increased from 5 to 1000 mM. A Na-B GCL specimen permeated with 1000 mM NH4+ solution to chemical equilibrium was subsequently permeated with DI water. Permeation with the NH4+ converted the Na-B to “NH4-bentonite” with more than 80% of the exchange complex occupied by NH4+. Hydraulic conductivity of this GCL specimen decreased from 5.9 × 10?6 m/s to 2.9 × 10?11 m/s during permeation with DI water, indicating that “NH4-bentonite” can swell and have low hydraulic conductivity, and that the impact of more concentrated NH4+ solutions on swelling and hydraulic conductivity is reversible.  相似文献   

12.
13.
The hydraulic conductivity of geosynthetic clay liners (GCLs) permeated with deionized water (S0) and NH4+ solutions, with concentrations of 100 mg/L (S100) and 1000 mg/L (S1000), was examined under six dry-wet cycles. The internal properties of virgin, desiccated, and healed GCLs were analyzed and quantified using X-ray computed tomography images. The hydraulic conductivity of the GCLs permeated with S0 and S100 underwent a negligible change during the six dry-wet cycles, whereas that of S1000 increased by almost three orders of magnitude after two desiccations. Each desiccation, after permeating with S0 and S100, generated a completely different macro-crack pattern; however, generation of macro-cracks at the same locations from dry cycles 2 to 6 and an abundance of micro-cracks were typical for S1000. This implies the severe deterioration of bentonite due to multi-desiccations and chemical compatibility with S1000. Moreover, the swell index of bentonite exposed to S1000 was reduced by approximately half, after six dry-wet cycles. Despite the lower volume percentage of macro-cracks for S1000 compared to S0 and S100, the swelling capacity of this bentonite was insufficient to fully heal these cracks. Hence, the swelling properties of bentonite dominate crack volume with regard to determining the hydraulic conductivity of GCLs.  相似文献   

14.
This paper examines two needle-punched geosynthetic clay liners' water retention behaviour at high suction ranges using the vapour equilibrium technique where super-saturated salt solutions controlled the relative humidity. This study shows that the bentonite form and its mineralogy affect the absorption/desorption of GCLs and their corresponding water retention curves. In particular, a granular bentonite-based GCL was found to absorb more and release less water than a powdered bentonite-based GCL due to its higher montmorillonite content and larger pores. The water retention curves of both GCLs exhibited very little hysteretic behaviour at high suction. Repeated wetting-drying cycles shifted the WRCs of both GCLs slightly downward with minimal impact on their degree of hysteresis.  相似文献   

15.
Leaving a composite liner exposed for an extended period can sometimes lead to down-slope bentonite erosion from geosynthetic clay liners (GCLs). This laboratory study examines a number of factors that can affect the erosion of bentonite particles with an imposed flow of water for one particular geotextile-encased, needle-punched GCL. The factors examined include the effect of an initial wet/dry cycle, water chemistry, flow rate, slope, prior cation exchange, and the effect of no-drying phase in the test cycle. No erosion was observed unless the GCL had been hydrated and dried to create a wet/dry cycle. The most critical factor was found to be the water chemistry. No erosion was observed with tap water (39 ppm calcium) with up to 360 cycles and a flow of 3 L/hour. Tests simulating the evaporation and condensation of water below an exposed composite liner by imposing deionized water on the GCL surface developed erosion holes within 5–6 cycles.  相似文献   

16.
Exposed composite GMB-GCL liners are at risk of downslope bentonite erosion caused by the release of low ionic strength condensed water onto the top surface of the GCL following daily solar heating. This paper investigates the use of X-ray computed tomography (X-ray CT) to quantify the thinning of the bentonite layer and the application of X-ray diffraction techniques (XRD) to investigate the changes in clay chemistry (if any) of the bentonite from the virgin GCL to the eroded bentonite. The effect of specimen size and scanning orientation was investigated resulting in a revised testing procedure in which the CT scanning orientation was changed from horizontal to vertical to permit a longer test specimen which was also sealed at the bottom edge to minimise the edge boundary condition. The X-ray CT results provide highly visual evidence that a) bentonite thinning immediately under the upper cover geotextile is the initial location of erosion, and b) the bentonite core erodes at a significantly higher rate when not covered by a geotextile than when covered by a geotextile. These observations indicate that the upper geotextile of the GCL plays a significant role in controlling the rate of bentonite erosion. Finally, a comparison of the virgin and runoff bentonite properties was conducted to investigate potential changes in swell index, X-ray diffraction results, and concentration of Na and Ca cations. The runoff bentonite was observed to had a significantly higher swell index (40?ml/2?g) than the virgin bentonite (28?ml/2?g) and lower Na and Ca concentrations. This finding is consistent with the observation from XRD analyses of the runoff bentonite which illustrate that the clay fraction of the bentonite is preferentially eroded by the application of DI water.  相似文献   

17.
已有研究表明孔隙水盐分对黏土的力学性质有着重要影响,但相关的定量研究仍需进一步深入。以渗透吸力作为宏观参数,将商用高岭土与钙基膨润土的混合土作为研究对象,用不同浓度的NaCl溶液与土混合,进行饱和重塑土的固结试验,探究孔隙水盐分对饱和重塑黏土压缩特性和渗透特性的影响规律。试验结果表明重塑饱和黏土的压缩指数Cc随着渗透吸力的增加而呈指数规律衰减,回弹指数未产生明显变化;在Burland体系下,渗透吸力对曲线初始段有较大影响;而屈服后,压缩曲线可以在Iv-lgσv分析体系中进行归一化。相同固结压力和孔隙比下,渗透吸力越小,次固结系数越大;次固结系数与压缩指数的比值 Cα/Cc的比值并不为常数,随着渗透吸力的增大而减小。同样的初始孔隙比,比例系数Ck=Δe/Δlgkv随渗透吸力增加而非线性递减,延拓了Tavenas认为比例系数Ck与初始孔隙比e0线性相关的认知。  相似文献   

18.
膨润土防水毯作为一种优异的防渗材料,国内暂无其在渗滤液环境下的渗透性能报道。本文拟配置性能组分稳定的代表性合成渗滤液作为实际渗滤液的替代试验介质,研究合成渗沥液对膨润土原料膨胀性能和滤失性能的影响,测试在合成渗滤液环境中,不同压力和温度条件下膨润土防水毯的渗透系数,以此为垃圾填埋工程和其他固废填埋工程使用膨润土防水毯作为防渗衬垫提供指导。  相似文献   

19.
In China, accidental fires are known to occur during construction, causing concrete to be exposed to high temperatures when it is at an early age (i.e. “young”). In this paper, compressive and splitting tensile strengths of concretes cured for different periods and exposed to high temperatures were obtained. The effects of the duration of curing, maximum temperature and the type of cooling on the strengths of concrete were investigated. Experimental results indicate that after exposure to high temperatures up to 800 °C, early-age concrete that has been cured for a certain period can regain 80% of the compressive strength of the control sample of concrete. The 3-day-cured early-age concrete was observed to recover the most strength. The type of cooling also affects the level of recovery of compressive and splitting tensile strength. For early-age concrete, the relative recovered strengths of specimens cooled by sprayed water are higher than those of specimens cooled in air when exposed to temperatures below 800 °C, while the changes for 28-day concrete are the converse. When the maximum temperature exceeds 800 °C, the relative strength values of all specimens cooled by water spray are lower than those of specimens cooled in air.  相似文献   

20.
In this study, the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised. Silica fume was used at concentrations of 0%, 5%, 10%, and 20%. Cube specimens (100 mm × 100 mm × 100 mm) were prepared for testing the compressive strength and ultrasonic pulse velocity. They were cured at 20°C±2°C in a standard cure for 7, 28, and 90 d. After curing, they were subjected to temperatures of 20°C, 200°C, 400°C, 600°C, and 800°C. Two well-known deep learning approaches, i.e., stacked autoencoders and long short-term memory (LSTM) networks, were used for forecasting the compressive strength and ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures. The forecasting experiments were carried out using MATLAB deep learning and neural network tools, respectively. Various statistical measures were used to validate the prediction performances of both the approaches. This study found that the LSTM network achieved better results than the stacked autoencoders. In addition, this study found that deep learning, which has a very good prediction ability with little experimental data, was a convenient method for civil engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号