首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field‐effect transistor memories usually require one additional charge storage layer between the gate contact and organic semiconductor channel. To avoid such complication, new donor–acceptor rod–coil diblock copolymers (P3HT44b‐Pison) of poly(3‐hexylthiophene) (P3HT)‐block‐poly(pendent isoindigo) (Piso) are designed, which exhibit high performance transistor memory characteristics without additional charge storage layer. The P3HT and Piso blocks are acted as the charge transporting and storage elements, respectively. The prepared P3HT44b‐Pison can be self‐assembled into fibrillar‐like nanostructures after the thermal annealing process, confirmed by atomic force microscopy and grazing‐incidence X‐ray diffraction. The lowest‐unoccupied molecular orbital levels of the studied polymers are significantly lowered as the block length of Piso increases, leading to a stronger electron affinity as well as charge storage capability. The field‐effect transistors (FETs) fabricated from P3HT44b‐Pison possess p‐type mobilities up to 4.56 × 10?2 cm2 V?1 s?1, similar to that of the regioregular P3HT. More interestingly, the FET memory devices fabricated from P3HT44b‐Pison exhibit a memory window ranging from 26 to 79 V by manipulating the block length of Piso, and showed stable long‐term data endurance. The results suggest that the FET characteristics and data storage capability can be effectively tuned simultaneously through donor/acceptor ratio and thin film morphology in the block copolymer system.  相似文献   

2.
Conjugated rod‐coil block copolymers provide an interesting route towards enhancing the properties of the conjugated block due to self‐assembly and the interplay of rod‐rod and rod‐coil interactions. Here, we demonstrate the ability of an attached semi‐fluorinated block to significantly improve upon the charge carrier properties of regioregular poly(3‐hexyl thiophene) (rr‐P3HT) materials on bare SiO2. The thin film hole mobilities on bare SiO2 dielectric surfaces of poly (3‐hexyl thiophene)‐block‐polyfluoromethacrylates (P3HT‐b‐PFMAs) can approach up to 0.12 cm2 V?1 s?1 with only 33 wt% of the P3HT block incorporated in the copolymer, as compared to rr‐P3HT alone which typically has mobilities averaging 0.03 cm2 V?1 s?1. To our knowledge, this is the highest mobility reported in literature for block copolymers containing a P3HT. More importantly, these high hole mobilities are achieved without multistep OTS treatments, argon protection, or post‐annealing conditions. Grazing incidence wide‐angle x‐ray scattering (GIWAX) data revealed that in the P3HT‐b‐PFMA copolymers, the P3HT rod block self‐assembles into highly ordered lamellar structures, similar to that of the rr‐P3HT homopolymer. Grazing incidence small‐angle x‐ray scattering (GISAXS) data revealed that lamellar structures are only observed in perpendicular direction with short PFMA blocks, while lamellae in both perpendicular and parallel directions are observed in polymers with longer PFMA blocks. AFM, GIWAXS, and contact angle measurements also indicate that PFMA block assembles at the polymer thin film surface and forms an encapsulation layer. The high charge carrier mobilities and the hydrophobic surface of the block copolymer films clearly demonstrates the influence of the coil block segment on device performance by balancing the crystallization and microphase separation in the bulk morphological structure.  相似文献   

3.
Bulk heterojunction solar cells based on blends of poly(3‐hexylthiophene) (P3HT) and phenyl‐C61‐butyric acid methyl ester (PC61BM) are fabricated using self‐assembled P3HT nanowires in a marginal solvent without post‐treatments. The interconnected network structures of self‐organized P3HT nanowires create continuous percolation pathways through the active layer and contribute to enhanced carrier mobility. The morphology and photovoltaic properties are studied as a function of ageing time of the P3HT precursor solution. Optimal photovoltaic properties are found at 60 h ageing time, which increases both light absorption and charge balance. Multilayered solar cells with a compositionally graded structure are fabriacted using preformed P3HT nanowires by inserting a pure P3HT donor phase onto the hole‐collecting electrode. Applying optimized annealing conditions to the P3HT buffer layer achieves an enhanced hole mobility and a power conversion efficiency of 3.94%. The introduction of a compositionally graded device structure, which contains a P3HT‐only region, reduces charge recombination and electron injection to the indium tin oxide (ITO) electrode and enhances the device properties. These results demonstrate that preformed semiconductor nanowires and compositionally graded structures constitute a promising approach to the control of bulk heterojunction morphology and charge‐carrier mobility.  相似文献   

4.
Hybrid bulk heterojunction solar cells based on nanocrystalline TiO2 (nc‐TiO2) nanorods capped with trioctylphosphine oxide (TOPO) and regioregular poly(3‐hexylthiophene) (P3HT) are processed from solution and characterized in order to relate the device function (optical absorption, charge separation, and transport and photovoltaic properties) to active‐layer properties and device parameters. Annealing the blend films is found to greatly improve the polymer–metal oxide interaction at the nc‐TiO2/P3HT interface, resulting in a six‐fold increase of the charge separation yield and improved photovoltaic device performance under simulated solar illumination. In addition, the influence of the organic ligand at the nc‐TiO2 particle surface is found to be crucial for charge separation. Ligand‐exchange procedures applied on the TOPO‐capped nc‐TiO2 nanorods with an amphiphilic ruthenium‐based dye are found to further improve the charge‐separation yield at the polymer–nanocrystal interface. However, the poor photocurrents generated in the hybrid blend devices, before and after ligand exchange, suggest that transport within or between nanoparticles limits performance. By comparison with other donor–acceptor bulk heterojunction systems, we conclude that charge transport in the nc‐TiO2:P3HT blend films is limited by the presence of an intrinsic trap distribution mainly associated with the nc‐TiO2 particles.  相似文献   

5.
A structured polymer solar cell architecture featuring a large interface between donor and acceptor with connecting paths to the respective electrodes is explored. To this end, poly‐(3‐hexylthiophene) (P3HT) nanorods oriented perpendicularly to indium tin oxide (ITO) glass are fabricated using an anodic aluminum oxide template. It is found that the P3HT chains in bulk films or nanorods are oriented differently; perpendicular or parallel to the ITO substrate, respectively. Such chain alignment of the P3HT nanorods enhanced the electrical conductivity up to tenfold compared with planar P3HT films. Furthermore, the donor/acceptor contact area could be maximised using P3HT nanorods as donor and C60 as acceptor. In a photovoltaic device employing this structure, remarkable photoluminescence quenching (88%) and a seven‐fold efficiency increase (relative to a device with a planar bilayer) are achieved.  相似文献   

6.
Polymer solar cells (PSCs) with poly(3‐hexylthiophene) (P3HT) as a donor, an indene‐C70 bisadduct (IC70BA) as an acceptor, a layer of indium tin oxide modified by MoO3 as a positive electrode, and Ca/Al as a negative electrode are presented. The photovoltaic performance of the PSCs was optimized by controlling spin‐coating time (solvent annealing time) and thermal annealing, and the effect of the spin‐coating times on absorption spectra, X‐ray diffraction patterns, and transmission electron microscopy images of P3HT/IC70BA blend films were systematically investigated. Optimized PSCs were obtained from P3HT/IC70BA (1:1, w/w), which exhibited a high power conversion efficiency of 6.68%. The excellent performance of the PSCs is attributed to the higher crystallinity of P3HT and better a donor–acceptor interpenetrating network of the active layer prepared under the optimized conditions. In addition, PSCs with a poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate) (PEDOT:PSS) buffer layer under the same optimized conditions showed a PCE of 6.20%. The results indicate that the MoO3 buffer layer in the PSCs based on P3HT/IC70BA is superior to that of the PEDOT:PSS buffer layer, not only showing a higher device stability but also resulting in a better photovoltaic performance of the PSCs.  相似文献   

7.
The morphological, bipolar charge‐carrier transport, and photovoltaic characteristics of poly(3‐alkylthiophene) (P3AT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side‐chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3‐butylthiophene) (P3BT, m = 4), poly(3‐pentylthiophene) (P3PT, m = 5), and poly(3‐hexylthiophene) (P3HT, m = 6). Solar cells with these blends deliver similar order of photo‐current yield (exceeding 10 mA cm?2) irrespective of side‐chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole‐only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field‐effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells.  相似文献   

8.
Previous investigations of the field‐effect mobility in poly(3‐hexylthiophene) (P3HT) layers revealed a strong dependence on molecular weight (MW), which was shown to be closely related to layer morphology. Here, charge carrier mobilities of two P3HT MW fractions (medium‐MW: Mn = 7 200 g mol?1; high‐MW: Mn = 27 000 g mol?1) are probed as a function of temperature at a local and a macroscopic length scale, using pulse‐radiolysis time‐resolved microwave conductivity (PR‐TRMC) and organic field‐effect transistor measurements, respectively. In contrast to the macroscopic transport properties, the local intra‐grain mobility depends only weakly on MW (being in the order of 10?2 cm2 V?1 s?1) and being thermally activated below the melting temperature for both fractions. The striking differences of charge transport at both length scales are related to the heterogeneity of the layer morphology. The quantitative analysis of temperature‐dependent UV/Vis absorption spectra according to a model of F. C. Spano reveals that a substantial amount of disordered material is present in these P3HT layers. Moreover, the analysis predicts that aggregates in medium‐MW P3HT undergo a “pre‐melting” significantly below the actual melting temperature. The results suggest that macroscopic charge transport in samples of short‐chain P3HT is strongly inhibited by the presence of disordered domains, while in high‐MW P3HT the low‐mobility disordered zones are bridged via inter‐crystalline molecular connections.  相似文献   

9.
Regioregular poly(3‐hexyl thiophene) (RR P3HT) is drop‐cast to fabricate field‐effect transistor (FET) devices from different solvents with different boiling points and solubilities for RR P3HT, such as methylene chloride, toluene, tetrahydrofuran, and chloroform. A Petri dish is used to cover the solution, and it takes less than 30 min for the solvents to evaporate at room temperature. The mesoscale crystalline morphology of RR P3HT thin films can be manipulated from well‐dispersed nanofibrils to well‐developed spherulites by changing solution processing conditions. The morphological correlation with the charge‐carrier mobility in RR P3HT thin‐film transistor (TFT) devices is investigated. The TFT devices show charge‐carrier mobilities in the range of 10–4 ~ 10–2 cm2 V–1 s–1 depending on the solvent used, although grazing‐incidence X‐ray diffraction (GIXD) reveals that all films develop the same π–π‐stacking orientation, where the <100>‐axis is normal to the polymer films. By combining results from atomic force microscopy (AFM) and GIXD, it is found that the morphological connectivity of crystalline nanofibrils and the <100>‐axis orientation distribution of the π–π‐stacking plane with respect to the film normal play important roles on the charge‐carrier mobility of RR P3HT for TFT applications.  相似文献   

10.
The effect of controlled thermal annealing on charge transport and photogeneration in bulk‐heterojunction solar cells made from blend films of regioregular poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10–8 m2 V–1 s–1 in as‐cast devices to ≈3 × 10–7 m2 V–1 s–1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2 × 10–8 m2 V–1 s–1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red‐shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge‐carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non‐annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short‐circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.  相似文献   

11.
The photoconductivity of solution‐cast Zn1–xMgxO (x=0‐0.4) and poly(3‐hexylthiophene) (P3HT) thin films, and Zn1‐xMgxO/P3HT bilayers is investigated using Time‐Resolved Microwave Conductivity (TRMC) with the aim of determining the locus of free charge carrier generation in the bilayer system. The photoconductivity of Zn1–xMgxO thin films, under illumination with 300 nm laser pulses, is limited by the formation of stable excitons and by scattering of the carriers at grain boundaries. The electron mobility in Zn1–xMgxO films decreases exponentially with Mg concentration, up to x=0.4. In agreement with previous work, free carriers are observed in the P3HT film under illumination with 500 nm pulses in the absence of an acceptor. Under illumination with 500 nm pulses, where only the polymer absorbs, the TRMC signal for the Zn1–xMgxO/P3HT bilayers for x≥0.2 is the same as that of pure P3HT, indicating that free carrier generation in these bilayers occurs predominately by exciton dissociation in the polymer bulk, and not at the interface between the polymer and the solution‐cast oxide. At lower Mg concentrations (x<0.2) the TRMC signal increases with decreasing x following the dependence of the electron mobility in the oxide but its light intensity dependence remains consistent with free carrier generation in the polymer bulk. To explain these results and previously published photovoltaic device data (Adv. Funct. Mater. 2007 , 17, 264) we propose that free carrier generation in the bilayers predominantly occurs in the bulk of P3HT, and is followed by electron injection to the oxide to yield photocurrent in photovoltaic cells. The dependence of the TRMC signal of the bilayers on Mg concentration is explained in terms of the yield for free carrier generation in the polymer and the relative contributions of electrons in the oxide and holes in the polymer.  相似文献   

12.
The field‐effect transistor (FET) and diode characteristics of poly(3‐alkylthiophene) (P3AT) nanofiber layers deposited from nanofiber dispersions are presented and compared with those of layers deposited from molecularly dissolved polymer solutions in chlorobenzene. The P3AT n‐alkyl‐side‐chain length was varied from 4 to 9 carbon atoms. The hole mobilities are correlated with the interface and bulk morphology of the layers as determined by UV–vis spectroscopy, transmission electron microscopy (TEM) with selected area electron diffraction (SAED), atomic force microscopy (AFM), and polarized carbon K‐edge near edge X‐ray absorption fine structure (NEXAFS) spectroscopy. The latter technique reveals the average polymer orientation in the accumulation region of the FET at the interface with the SiO2 gate dielectric. The previously observed alkyl‐chain‐length‐dependence of the FET mobility in P3AT films results from differences in molecular ordering and orientation at the dielectric/semiconductor interface, and it is concluded that side‐chain length does not determine the intrinsic mobility of P3ATs, but rather the alkyl chain length of P3ATs influences FET diode mobility only through changes in interfacial bulk ordering in solution processed films.  相似文献   

13.
A simple and effective modification of phenyl‐C70‐butyric acid methyl ester (PC70BM) is carried out in a single step after which the material is used as electron acceptor for bulk heterojunction polymer solar cells (PSCs). The modified PC70BM, namely CN‐PC70BM, showed broader and stronger absorption in the visible region (350–550 nm) of the solar spectrum than PC70BM because of the presence of a cyanovinylene 4‐nitrophenyl segment. The lowest unoccupied molecular energy level (LUMO) of CN‐PC70BM is higher than that of PC70BM by 0.15 eV. The PSC based on the blend (cast from tetrahydrofuran (THF) solution) consists of P3HT as the electron donor and CN‐PC70BM as the electron acceptor and shows a power conversion efficiency (PCE) of 4.88%, which is higher than that of devices based on PC70BM as the electron acceptor (3.23%). The higher PCE of the solar cell based on P3HT:CN‐PC70BM is related to the increase in both the short circuit current (Jsc) and the open circuit voltage (Voc). The increase in Jsc is related to the stronger light absorption of CN‐PC70BM in the visible region of the solar spectrum as compared to that of PC70BM. In other words, more excitons are generated in the bulk heterojunction (BHJ) active layer. On the other hand, the higher difference between the LUMO of CN‐PC70BM and the HOMO of P3HT causes an enhancement in the Voc. The addition of 2% (v/v) 1‐chloronapthalene (CN) to the THF solvent during film deposition results in an overall improvement of the PCE up to 5.83%. This improvement in PCE can be attributed to the enhanced crystallinity of the blend (particularly of P3HT) and more balanced charge transport in the device.  相似文献   

14.
The use of vapor phase polymerized poly(3,4‐ethylenedioxythiophene) (VPP‐PEDOT) as a metal‐replacement top anode for inverted solar cells is reported. Devices with both i) standard bulk heterojunction blends of poly(3‐hexylthiophene) (P3HT) donor and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C60 (PCBM) soluble fullerene acceptor and ii) hybrid inorganic/organic TiO2/P3HT acceptor/donor active layers are studied. Stamp transfer printing methods are used to deposit both the VPP‐PEDOT top anode and a work function enhancing PEDOT:polystyrenesulphonate (PEDOT:PSS) interlayer. The metal‐free devices perform comparably to conventional devices with an evaporated metal top anode, yielding power conversion efficiencies of 3% for bulk heterojunction blend and 0.6% for organic/inorganic hybrid structures. These encouraging results suggest that stamp transfer printed VPP‐PEDOT provides a useful addition to the electrode materials tool‐box available for low temperature and non‐vacuum solar cell fabrication.  相似文献   

15.
Dye‐sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole‐transporter materials. In order to further improve the efficiency of solid‐state dye‐sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3‐hexylthiophene) (P3HT), to replace the more commonly used “transparent” 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9′spiro‐bifluorene (spiro‐OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro‐OMeTAD based solid‐state DSSC, the P3HT‐based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li‐TFSI), although the precise role of these additives has not yet been clarified in solid‐state DSCs. Here, we present a thorough study on the effect of Li‐TFSI in P3HT based solid‐state DSSC incorporating an indolene‐based organic sensitizer termed D102. Employing ultrafast transient absorption and cw‐emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO2. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO2 conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system.  相似文献   

16.
Precise control of orientation and crystallinity is achieved in regioregular poly(3‐hexylthiophene) (P3HT) thin films by using high‐temperature rubbing, a fast and effective alignment method. Rubbing P3HT films at temperatures TR ≥ 144 °C generates highly oriented crystalline films with a periodic lamellar morphology with a dichroic ratio reaching 25. The crystallinity and the average crystal size along the chain axis direction, lc, are determined by high‐resolution transmission electron microscopy and differential scanning calorimetry. The inverse of the lamellar period l scales with the supercooling and can accordingly be controlled by the rubbing temperature TR. Uniquely, the observed exciton coupling in P3HT crystals is correlated to the length of the average planarized chain segments lc in the crystals. The high alignment and crystallinity observed for TR > 200 °C cannot translate to high hole mobilities parallel to the rubbing because of the adverse effect of amorphous zones interrupting charge transport between crystalline lamellae. Although tie chains bridge successive P3HT crystals through amorphous zones, their twisted conformation restrains interlamellar charge transport. The evolution of charge transport anisotropy is correlated to the evolution of the dominant contact plane from mainly face‐on (TR ≤ 100 °C) to edge‐on (TR ≥ 170 °C).  相似文献   

17.
An ambipolar conjugated polymer CF3‐PBTV, poly(2,2′‐bis(trifluoromethyl)biphenyl‐alt‐2,5‐divinylthiophene), consisting of thienylenevinylene as the donor and trifluoromethyl‐substituted biphenyl as the acceptor has been successfully synthesized. CF3‐PBTV shows solution‐processability without electrically insulating long alkyl side chains. Grazing incidence X‐ray diffraction results suggest a nearly equal population of flat‐on and end‐on domains in CF3‐PBTV thin film. The excellent ambipolarity of CF3‐PBTV is demonstrated by well‐equivalent charge mobilities of 0.065 and 0.078 cm2 V?1 s?1 for p‐ and n‐channel, respectively. The organic field‐effect transistors (OFET) also shows very high on/off ratio (≈107) which is attributed to the relatively large bandgap and low‐lying highest occupied molecular orbital (HOMO) of CF3‐PBTV. The OFET performance barely changes after the device is stored in ambient conditions for 90 days. The ambient‐stability is attributed to the enhanced oxidative stability from its low‐lying HOMO and the better moisture resistance from its fluorine contents. The performance of CF3‐PBTV based OFET is annealing independent. It is noteworthy that the solution‐processable, ambipolar, and thienylenevinylene‐containing conjugated polymer without any long alkyl side chains is reported for the first time. And to the best of our knowledge, it is the first ambient‐stable, annealing‐free OFET with well‐equivalent ambipolarity.  相似文献   

18.
The power conversion efficiency of organic and hybrid solar cells is commonly reduced by a low open‐circuit voltage (VOC). In these cases, the VOC is significantly less than the energy of the lowest energy absorbed photon, divided by the elementary charge q. The low photovoltage originates from characteristically large band offsets between the electron donor and acceptor species. Here a simple method is reported to systematically tune the band offset in a π‐conjugated polymer–metal oxide hybrid donor–acceptor system in order to maximize the VOC. It is demonstrated that substitution of magnesium into a zinc oxide acceptor (ZnMgO) reduces the band offset and results in a substantial increase in the VOC of poly(3‐hexylthiophene) (P3HT)–ZnMgO planar devices. The VOC is seen to increase from 500 mV at x = 0 up to values in excess of 900 mV for x = 0.35. A concomitant increase in overall device efficiency is seen as x is increased from 0 to 0.25, with a maximum power‐conversion efficiency of 0.5 % obtained at x = 0.25, beyond which the efficiency decreases because of increased series resistance in the device. This work provides a new tool for understanding the role of the donor–acceptor band offset in hybrid photovoltaics and for maximizing the photovoltage and power‐conversion efficiency in such devices.  相似文献   

19.
A new small‐molecule nonfullerene acceptor based on the benzo[1,2‐b:4,5‐b′]dithiophene (BDT) fused central core with asymmetrical alkoxy and thienyl side chains, namely TOBDT , is designed and synthesized. The alkoxy unit helps narrow the bandgap, and thienyl side chain helps enhance the intermolecular interaction. As a result, TOBDT is suitable to match the deep‐lying highest occupied molecular orbital (HOMO) of polymer donor PM6 . Then, a strong crystalline acceptor IDIC is introduced as the third component to fabricate as‐cast nonfullerene ternary devices to achieve absorption and morphology control. Addition of IDIC not only mixes well with TOBDT but modulates the morphology of the blend film, which helps to balance the charge transport properties and reduce the photovoltage loss of ternary devices. All these contribute to synergetic improvement of Jsc, Voc, and fill factor parameters, leading to a power conversion efficiency of 14.0% for the as‐cast fullerene‐free ternary device.  相似文献   

20.
The synthesis, optoelectronic, and photovoltaic properties of novel acceptor–donor–acceptor (A–D–A) based π‐conjugated functional molecules 1 – 3, comprising a planar S,N‐heteropentacene as central donor substituted with various terminal acceptor units, such as 1,1‐dicyanovinylene (DCV) and 1‐(1,1‐dicyanomethylene)‐cyclohex‐2‐ene (DCC), are reported. The structural variation of the end groups provides molecules 1 – 3 with gradually increased π‐conjugation due to a rising number of double bonds, which comes from the DCC unit(s). From optoelectronic investigation, structure–property relationships are deduced and the novel A–D–A heteropentacenes 1 – 3 are implemented as photoactive donor component in solution‐processed bulk heterojunction solar cells together with [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor. The structural variation in the S,N‐heteropentacenes leads to clear trends in the photovoltaic performance and power conversion efficiencies of up to 4.9% are achieved. Furthermore, due to extension of the double bonds a clear trade‐off between the open circuit voltage (V OC) and the short circuit current density (J SC) values is observed. The role of additives on the optimization of the nanoscale morphology and device performance is investigated. The findings presented herein demonstrate that depending on the types of materials the additive may have significantly different effects on the active layer morphology and the device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号