首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The construction of functionalized poly(3,4‐ethylenedioxythiophene) (PEDOT) nanowire devices for label‐free protein detection is reported. Direct growth/assembly of PEDOT nanowires with carboxylic acid side‐chain functional groups (poly(EDOT‐COOH)) across the electrode junction is achieved by using an electric‐field‐assisted method. These functionalized PEDOT nanowire devices show typical depletion‐mode p‐type field‐effect transistor (FET) properties. Upon conjugation with a protein‐binding aptamer, the PEDOT nanowire FET devices are used for label‐free electronic detection of a target protein of interest. The binding of a positively charged protein causes a substantial decrease in current flow, attributed to the specific interaction between target protein molecules and aptamer‐conjugated polymer chains.  相似文献   

2.
The growing concern over the depletion of hydrocarbon resources, and the adverse environmental effects associated with their use, has increased the demand for renewable energy sources. Thermoelectric (TE) power generation from waste heat has emerged as a renewable energy source that does not generate any pollutants. Recently, ink‐based processing for the preparation of TE materials has attracted tremendous attention because of the simplicity in design of power generators and the possibility of cost‐effective manufacturing. In this progress report, recent advances in the development of TE inks, processing techniques, and ink‐fabricated devices are reviewed. A summary of typical formulations of TE materials as inks is included, as well as a discussion on various ink‐based fabrication methods, with several examples of newly designed devices fabricated using these techniques. Finally, the prospects of this field with respect to the industrialization of TE power generation technology are presented.  相似文献   

3.
White organic light‐emitting devices (WOLEDs) have advanced over the last twelve years to the extent that these devices are now being considered as efficient solid‐state lighting sources. Initially, WOLEDs were targeted towards display applications for use primarily as liquid‐crystal display backlights. Now, their power efficiencies have surpassed those of incandescent sources due to improvements in device architectures, synthesis of novel materials, and the incorporation of electrophosphorescent emitters. This review discusses the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality. Hindrances to their widespread acceptance as solid‐state lighting sources are also noted.  相似文献   

4.
5.
3D‐Poly(3,4‐ethylenedioxythiophene) (PEDOT) electrodes are prepared using the multi‐step template‐assisted approach. Specifically, poly(lactic acid) nano‐ and microfibers collected on a previously polymerized PEDOT film are used as templates for PEDOT nano‐ and microtubes, respectively. Morphological analysis of the samples indicates that 3D‐PEDOT electrodes obtained using a low density of templates, in which nano‐ and microtubes are clearly identified, exhibit higher porosity, and specific surface than conventional 2D‐PEDOT electrodes. However, a pronounced leveling effect is observed when the density of templates is high. Thus, electrodes with microtubes still present a 3D‐morphology but much less marked than those prepared using a low density of PLA microfibers, whereas the morphology of those with nanotubes is practically identical to that of films. Electrochemical studies prove that solid supercapacitors prepared using 3D‐PEDOT electrodes and κ‐carrageenan biohydrogel as electrolytic medium, exhibit higher ability to exchange charge reversibly and to storage charge than the analogues prepared with 2D‐electrodes. Furthermore, solid devices prepared using 3D‐electrodes and κ‐carrageenan biohydrogel exhibit very similar specific capacitances that those obtained using the same electrodes and a liquid electrolyte (i.e., acetonitrile solution with 0.1 M LiClO4). These results prove that the success of 3D‐PEDOT electrodes is independent of the electrolytic medium.
  相似文献   

6.
WOLEDs offer new design opportunities in practical solid‐state lighting and could play a significant role in reducing global energy consumption. Obtaining white light from organic LEDs is a considerable challenge. Alongside the development of new materials with improved color stability and balanced charge transport properties, major issues involve the fabrication of large‐area devices and the development of low‐cost manufacturing technology. This Review will describe the types of materials (small molecules and polymers) that have been used to fabricate WOLEDs. A range of device architectures are presented and appraised.  相似文献   

7.
Future healthcare requires development of novel theranostic agents that are capable of not only enhancing diagnosis and monitoring therapeutic responses but also augmenting therapeutic outcomes. Here, a versatile and stable nanoagent is reported based on poly(ethylene glycol)‐b‐poly(l ‐thyroxine) (PEG‐PThy) block copolypeptide for enhanced single photon emission computed tomography/computed tomography (SPECT/CT) dual‐modality imaging and targeted tumor radiotherapy in vivo. PEG‐PThy acquired by polymerization of l ‐thyroxine‐N‐carboxyanhydride (Thy‐NCA) displays a controlled Mn, high iodine content of ≈49.2 wt%, and can spontaneously form 65 nm‐sized nanoparticles (PThyN). In contrast to clinically used contrast agents like iohexol and iodixanol, PThyN reveals iso‐osmolality, low viscosity, and long circulation time. While PThyN exhibits comparable in vitro CT attenuation efficacy to iohexol, it greatly enhances in vivo CT imaging of vascular systems and soft tissues. PThyN allows for surface decoration with the cRGD peptide achieving enhanced CT imaging of subcutaneous B16F10 melanoma and orthotopic A549 lung tumor. Taking advantages of a facile iodine exchange reaction, 125I‐labeled PThyN enables SPECT/CT imaging of tumors and monitoring of PThyN biodistribution in vivo. Besides, 131I‐labeled and cRGD‐functionalized PThyN displays remarkable growth inhibition of the B16F10 tumor in mice (tumor inhibition rate > 89%). These poly(l ‐thyroxine) nanoparticles provide a unique and versatile theranostic platform for varying diseases.  相似文献   

8.
White polymer light‐emitting devices (WPLEDs) have become a field of immense interest in both scientific and industrial communities. They have unique advantages such as low cost, light weight, ease of device fabrication, and large area manufacturing. Applications of WPLEDs for solid‐state lighting are of special interest because about 20% of the generated electricity on the earth is consumed by lighting. To date, incandescent light bulbs (with a typical power efficiency of 12–17 lm W?1) and fluorescent lamps (about 40–70 lm W?1) are the most widely used lighting sources. However, incandescent light bulbs convert 90% of their consumed power into heat while fluorescent lamps contain a small but significant amount of toxic mercury in the tube, which complicates an environmentally friendly disposal. Remarkably, the device performances of WPLEDs have recently been demonstrated to be as efficient as those of fluorescent lamps. Here, we summarize the recent advances in WPLEDs with special attention paid to the design of novel luminescent dopants and device structures. Such advancements minimize the gap (for both efficiency and stability) from other lighting sources such as fluorescent lamps, light‐emitting diodes based on inorganic semiconductors, and vacuum‐deposited small‐molecular devices, thus rendering WPLEDs equally competitive as these counterparts currently in use for illumination purposes.  相似文献   

9.
An overview of the electrochemistry of poly(3,4‐alkylenedioxythiophene)s (PXDOTs) is presented. As a class of conducting and electroactive polymers that can exhibit high and quite stable conductivities, a high degree of optical transparency as a conductor, and the ability to be rapidly switched between conducting doped and insulating neutral states, PXDOTs have attracted attention across academia and industry. Numerous fundamental aspects are addressed here in detail, ranging from the electrochemical synthesis of PXDOTs, a variety of in‐situ characterization techniques, the broad array of properties accessible, and morphological aspects. Finally, two electrochemically‐driven applications, specifically electrochromism and chemical sensors of PXDOTs are discussed.  相似文献   

10.
The advantageous physiochemical properties of poly(dimethylsiloxane) (PDMS) have made it an extremely useful material for prototyping in various technological, scientific, and clinical areas. However, PDMS molding is a manual procedure and requires tedious assembly steps, especially for 3D designs, thereby limiting its access and usability. On the other hand, automated digital manufacturing processes such as stereolithography (SL) enable true 3D design and fabrication. Here the formulation, characterization, and SL application of a 3D‐printable PDMS resin (3DP‐PDMS) based on commercially available PDMS‐methacrylate macromers, a high‐efficiency photoinitiator and a high‐absorbance photosensitizer, is reported. Using a desktop SL‐printer, optically transparent submillimeter structures and microfluidic channels are demonstrated. An optimized blend of PDMS‐methacrylate macromers is also used to SL‐print structures with mechanical properties similar to conventional thermally cured PDMS (Sylgard‐184). Furthermore, it is shown that SL‐printed 3DP‐PDMS substrates can be rendered suitable for mammalian cell culture. The 3DP‐PDMS resin enables assembly‐free, automated, digital manufacturing of PDMS, which should facilitate the prototyping of devices for microfluidics, organ‐on‐chip platforms, soft robotics, flexible electronics, and sensors, among others.  相似文献   

11.
采用迈克尔加成反应制备了单体2,7-二溴-9,9-二(丙酸二甲氨基乙酯)芴(FDMAEA);采用Suzuki偶合反应制备了不同FDMAEA结构单元含量的醇溶性9,9-二(丙酸二甲氨基乙酯)芴-9,9-二辛基芴共聚物(PFDMAEA)。通过核磁共振、凝胶渗透色谱、溶解性测试、紫外-可见光光谱、荧光发射光谱等对其进行了分析研究。结果表明,成功合成了2,7-二溴-9,9-二(丙酸二甲氨基乙酯)芴及9,9-二(丙酸二甲氨基乙酯)芴-9,9-二辛基芴共聚物。该共聚物在极性溶剂,如甲醇中具有良好的溶解性。由于含有DMAEA支链的PFDMAEA主链容易扭曲,共轭长度变短,共聚物的紫外吸收光谱和荧光光谱随着FDMAEA含量的增加而发生蓝移。荧光发光光谱研究表明,溶剂的极性、溶液的浓度、温度和pH值对共聚物的发光性能有很大的影响。随着溶剂极性增大,共聚物的荧光发射强度不断增加。荧光发射强度随溶液浓度的增加先增加后降低,随着溶液温度的上升而降低。当溶液pH值由1增大到14时,荧光强度不断降低,直至淬灭。  相似文献   

12.
Electrochemical energy storage (EES) devices have attracted immense research interests as an effective technology for utilizing renewable energy. 1D carbon‐based nanostructures are recognized as highly promising materials for EES application, combining the advantages of functional 1D nanostructures and carbon nanomaterials. Here, the recent advances of 1D carbon‐based nanomaterials for electrochemical storage devices are considered. First, the different categories of 1D carbon‐based nanocomposites, namely, 1D carbon‐embedded, carbon‐coated, carbon‐encapsulated, and carbon‐supported nanostructures, and the different synthesis methods are described. Next, the practical applications and optimization effects in electrochemical energy storage devices including Li‐ion batteries, Na‐ion batteries, Li–S batteries, and supercapacitors are presented. After that, the advanced in situ detection techniques that can be used to investigate the fundamental mechanisms and predict optimization of 1D carbon‐based nanocomposites are discussed. Finally, an outlook for the development trend of 1D carbon‐based nanocomposites for EES is provided.  相似文献   

13.
Organic light‐emitting devices (OLEDs), typically operated with constant‐voltage or direct‐current (DC) power sources, are candidates for next‐generation solid‐state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC‐driven OLEDs by directly driving devices using time‐dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC‐driven OLEDs, for example, double‐insulation, single‐insulation, double‐injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high‐performance AC‐driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC‐driven OLEDs is then discussed, especially as they relate to device physics.  相似文献   

14.
In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid‐state lighting, such as white light‐emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat‐panel displays and solid‐state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever‐increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor‐nanocrystals‐based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid‐state lighting technology are discussed.  相似文献   

15.
Increasing energy demands and environment awareness have promoted extensive research on the development of alternative energy conversion and storage technologies with high efficiency and environmental friendliness. Among them, water splitting is very appealing, and is receiving more and more attention. The critical challenge of this renewable‐energy technology is to expedite the oxygen evolution reaction (OER) because of its slow kinetics and large overpotential. Therefore, developing efficient electrocatalysts with high catalytic activities is of great importance for high‐performance water splitting. In the past few years, much effort has been devoted to the development of alternative OER electrocatalysts based on transition‐metal elements that are low‐cost, highly efficient, and have excellent stability. Here, recent progress on the design, synthesis, and application of OER electrocatalysts based on transition‐metal elements, including Co, Ni, and Fe, is summarized, and some invigorating perspectives on the future developments are provided.  相似文献   

16.
Considerable progress in materials development and device integration for mechanically bendable and stretchable optoelectronics will broaden the application of “Internet‐of‐Things” concepts to a myriad of new applications. When addressing the needs associated with the human body, such as the detection of mechanical functions, monitoring of health parameters, and integration with human tissues, optoelectronic devices, interconnects/circuits enabling their functions, and the core passive components from which the whole system is built must sustain different degrees of mechanical stresses. Herein, the basic characteristics and performance of several of these devices are reported, particularly focusing on the conducting element constituting them. Among these devices, strain sensors of different types, energy storage elements, and power/energy storage and generators are included. Specifically, the advances during the past 3 years are reported, wherein mechanically flexible conducting elements are fabricated from (0D, 1D, and 2D) conducting nanomaterials from metals (e.g., Au nanoparticles, Ag flakes, Cu nanowires), carbon nanotubes/nanofibers, 2D conductors (e.g., graphene, MoS2), metal oxides (e.g., Zn nanorods), and conducting polymers (e.g., poly(3,4‐ethylenedioxythiophene):poly(4‐styrene sulfonate), polyaniline) in combination with passive fibrotic and elastomeric materials enabling, after integration, the so‐called electronic skins and electronic textiles.  相似文献   

17.
Colloidal‐quantum‐dot (CQD) photovoltaic devices are promising candidates for low‐cost power sources owing to their low‐temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple‐step CQD‐layer‐deposition process. Herein, high‐efficiency photovoltaic devices prepared with CQD‐ink using a phase‐transfer‐exchange (PTE) method are reported. Using CQD‐ink, the fabrication of active layers by single‐step coating and the suppression of surface trap states are achieved simultaneously. The CQD‐ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD‐ink devices show much lower energy loss than other reported high‐efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs.  相似文献   

18.
Perovskite light‐emitting diodes (PeLEDs) have attracted considerable attention because of their potential in display and lighting applications. To promote commercialization of PeLEDs, it is important to improve the external quantum efficiency of the devices, which depends on their internal quantum efficiency (IQE) and light extraction efficiency. Optical simulations have revealed that 20–50% of the light generated in the device will be lost to surface plasmon (SP) modes formed in the metal/dielectric interfaces. Therefore, extracting the optical energy in SP modes to the air will greatly increase the light extraction efficiency of PeLEDs. In addition, the SPs can accelerate radiative recombination of the emitter via near‐field effects. Thus, the IQE of a PeLED can also be enhanced by SP manipulation. In this review, first, general concepts of the SPs and how they can enhance the efficiency of LEDs are introduced. Then recent progresses in SP‐enhanced emission of perovskite films and LEDs are systematically reviewed. After that, the challenges and opportunities of the SP‐enhanced PeLEDs are shown, followed by an outlook of further development of the SPs in perovskite optoelectronic devices.  相似文献   

19.
Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble‐metal‐based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot‐injection method, the heating‐up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD‐based composites as catalysts is discussed.  相似文献   

20.
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir‐based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir‐based multimetallic PHNCs show transition‐metal‐dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First‐principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much‐enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall‐water‐splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm?2, and only 8 mV of polarization‐curve shift after a 1000‐cycle durability test in 0.5 m H2SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high‐performance electrochemical overall‐water‐splitting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号