首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the isothermal and non‐isothermal polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) with barbituric acid (BTA) were investigated by the differential scanning calorimeter. The experimental results showed that the polymerizations of BMI with BTA were governed by the competitive Michael addition reaction and free radical polymerization mechanisms. Furthermore, the contribution of free radical polymerization becomes more important when the mole fraction of BTA decreases. 1H NMR and 13C NMR measurements further support the coexistence of the Michael addition reaction and free radical polymerization mechanisms. A preliminary kinetic model that took into account the competitive Michael addition reaction and free radical polymerization mechanisms was developed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
With the addition of sufficient hydroquinone to completely suppress the free radical polymerization, the kinetics of Michael addition polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) and barbituric acid (BTA) with BMI/BTA = 2/1 (mol/mol) in 1‐methyl‐2‐pyrrolidone was investigated independently. A mechanistic model was developed to adequately predict the polymerization kinetics before a critical conversion (ca. 60%), at which point the diffusion‐controlled polymer reactions started to predominate in the latter stage of polymerization. The Michael addition polymerization rate constants and activation energy in the temperature range 383–423 K were determined accordingly. Beyond the critical conversion, a relatively stationary limiting conversion (ca. 69%) independent of the reaction temperature was achieved. A diffusion‐controlled polymerization model taken from the literature satisfactorily predicted the limiting conversion data. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

3.
The effect of solvent proton affinity on the kinetics of the Michael addition polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) and barbituric acid (BTA) in different solvents [N‐methyl‐2‐pyrrolidone (NMP), N,N′‐dimethylacetamide (DMAC), and N,N′‐dimethylformamide (DMF)] were investigated. This was achieved by the complete suppression of the competitive free radical polymerization via the addition of a sufficient amount of hydroquinone (HQ). A mechanistic model was developed to adequately predict the polymerization kinetics before a critical conversion, at which point the diffusion‐controlled polymerization become the predominant factor during the latter stage of polymerization, was achieved. The activation energy (Ea) of the Michael addition polymerization of BMI with BTA in the presence of HQ in increasing order was: NMP < DMAC < DMF, which was correlated quite well with the solvent proton affinity (NMP > DMAC > DMF). By contrast, the frequency factor (A) in increasing order is: NMP < DMAC < DMF. As a result of the compensation effect between Ea and A, at constant temperature, the Michael addition rate constant decreased with increasing solvent proton affinity. POLYM. ENG. SCI., 54:559–568, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
The non‐isothermal degradation kinetics of the cured polymer samples of N,N′‐bismaleimide‐4,4′‐diphenylmethane/barbituric acid [BMI/BTA = 2/1 (mol/mol)] based polymers in the presence of hydroquinone (HQ) and native BMI/BTA was investigated by the thermogravimetric (TG) technique. By adding 5 wt % HQ into the BMI/BTA polymerization, the activation energy (Ea) of the thermal degradation process increased significantly in comparison with native BMI/BTA. Thus, the thermal stability of the cured polymer sample in the presence of HQ was greatly improved. The thermal degradation process exhibits three distinct stages. The key kinetic parameters associated with these stages were attained via the model‐fitting method. For the sample of native BMI/BTA, the thermal degradation process was primarily controlled by nucleation, followed by the multi‐decay law in the first stage. In contrast, the reaction order model adequately described the thermal degradation kinetics in the second stage. As to the last stage, the complex processes were described satisfactorily by the best‐fitted reaction model. For the sample of BMI/BTA/5 wt % HQ, the degradation process was controlled by the nucleation mechanism, followed by the multi‐molecular decay law in the first stage. In contrast, the second stage was controlled by the mixed mode of the competitive reaction order mechanism and 3‐D diffusion mechanism. In the third stage, the complex processes were also adequately described by the best‐fitted reaction model. All the experimental results illustrated that incorporation of 5 wt % HQ into the BMI/BTA based polymer resulted in the best thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1923–1930, 2013  相似文献   

5.
6.
The free radical photopolymerization of N,N‐dimethylacrylamide was investigated at 25 °C and at low conversion in several solvents ranging from weak polar solvents to water. The polymerization is strongly accelerated in the aqueous medium, with the polymerization rate increasing one order of magnitude when the solvent is changed from an organic one to aqueous medium. These results were analysed in terms of macroradical conformation, effect of medium viscosity, aggregate formation, hydrogen bond formation and effect of temperature. The results suggest that the main factor that controls the polymerization rate is a kinetic effect due to the hydrogen bonding between the amide carbonyl group and water molecules. Also, we found that polymer properties, such as the thermodynamic quality of the solvent for the polymer backbone and molecular weight control using transfer agents, are influenced by the intermolecular hydrogen bonding. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The preparation and characterization of phenylsiloxane (PhSLX)‐modified N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI)/barbituric acid (BTA) (10/1 mol/mol) oligomers are described. 3‐Aminopropyltriethoxysilane (APTES) was used as the coupling agent. The resultant hybrid BMI/BTA‐APTES‐PhSLX polymers were characterized primarily using thermogravimetric analysis in combination with differential scanning calorimetry and Fourier transform infrared measurements. The thermal stability of the BMI/BTA oligomer was improved significantly by incorporation of a small amount (20–30 wt%) of the copolymer of PhSLX and APTES (PASi). After adequate post‐curing reactions, the PASi‐modified BMI/BTA oligomers (HYBRID20 and HYBRID30 containing 20 and 30 wt% PASi, respectively) exhibited greatly reduced thermal degradation rates in the temperature range 300–800 °C and an increased level of residues at 800 °C as compared to the native BMI/BTA oligomer. This was further confirmed by thermal degradation kinetic studies, in which the activation energies for the thermal degradation reactions of the cured PASi‐modified BMI/BTA oligomers were shown to be higher than that of the pristine BMI/BTA oligomer. © 2012 Society of Chemical Industry  相似文献   

8.
The potential of time‐domain nuclear magnetic resonance (TD‐NMR) for the real‐time monitoring of solution radical polymerizations is demonstrated. A model system composed of a redox‐pair initiator system, acrylamide as monomer and water as solvent was investigated. A second‐generation continuous wave free precession technique was employed to measure the longitudinal relaxation time constant (T1) of the samples throughout the polymerization reactions. This parameter was shown to be sensitive to the reactant feed free‐radical enhancement of the water molecule relaxation time, making it a good probe to monitor monomer conversion in real time in an automated, non‐destructive fashion. It was found that the T1 value was better than the transverse relaxation time constant (T2) for describing the evolution of the polymerization reactions, due to its greater sensitivity to paramagnetic effects. The TD‐NMR signal variation observed was linked to the formation, propagation and termination steps of the radical polymerization kinetics scheme. These first results may contribute to the application of real‐time monitoring of radical polymerization reactions employing low‐cost and robust TD‐NMR spectrometers. © 2018 Society of Chemical Industry  相似文献   

9.
This work reports the preparation of 2‐hydroxyethyl methacrylate (HEMA)/N‐vinyl‐2‐pyrrolidone (NVP) interpenetrating polymer network (IPN) hydrogels by UV‐initiated polymerization in the presence of free radical photoinitiator Darocur 1173 and cationic photoinitiator 4,4′‐dimethyl diphenyl iodonium hexafluorophosphate. The polymerization mechanism was investigated by the formation of gel network. The structure and morphology of the HEMA/NVP IPN hydrogels were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that the IPN gels exhibited homogeneous morphology. The dehydration rates of HEMA/NVP IPN hydrogels were examined by the gravimetric method. The results revealed that the hydrogels had a significant improvement of antidehydration ability in comparison with poly(2‐hydroxyethyl methacrylate)(PHEMA) hydrogel embedded physically with poly(N‐vinyl‐2‐pyrrolidone)(PVP). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The living/controlled radical polymerization of stearyl methacrylate was carried out with a conventional radical initiator (2,2′‐azobisisobutyronitrile) in N,N‐dimethylformamide in the presence of a 2,2′‐bipyridine complex of hexakis(N,N‐dimethylformamide)iron(III) perchlorate. The polymerization mechanism was thought to proceed through a reverse atom transfer radical polymerization. The molecular weights of resulting poly(stearyl methacrylate) increased with conversion, and the resulting molecular weight distributions were quite narrow. The rates of polymerization exhibited first‐order kinetics with respect to the monomer. A probable reaction mechanism for the polymerization system is postulated to explain the observed results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1236–1245, 2002  相似文献   

11.
A series of novel aromatic polyimides were synthesized from N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline and aromatic tetracarboxylic dianhydrides through a conventional two‐step procedure. Most of the polyimides exhibited reasonable solubility in organic solvents and could afford robust films via solution casting. The polyimides exhibited high thermal stability, with glass transition temperatures in the range 227–273 °C and 10% weight‐loss temperatures in excess of 550 °C. All the polyimide films showed ambipolar redox and multi‐electrochromic behaviors. They exhibited two reversible oxidation redox couples at 0.94–0.98 and 1.09–1.12 V versus Ag/AgCl in acetonitrile solution. A coupling reaction between the radical cations of the pendent triphenylamine units occurred during the oxidative process forming a tetraphenylbenzidine structure which resulted in an additional redox state and color change. © 2014 Society of Chemical Industry  相似文献   

12.
The homopolymerization of divinylbenzene (DVB) as an excellent crosslinker (0.20 mol/L) with dimethyl 2,2′‐azobisisobutyrate (MAIB) proceeded homogeneously without any gelation at 80°C in benzene when the MAIB concentrations as high as 0.30–0.50 mol/L were used, yielding soluble polymers. In the polymerization at the concentrations of [DVB] = 0.20 mol/L and [MAIB] = 0.50 mol/L, the polymer yield increased with time and leveled off over 90 min. The molecular weight and molecular weight distribution increased with polymer yield. The vinyl groups of DVB were observed to be almost completely consumed in about 80 min, by FT near‐IR spectroscopic analysis. The homogeneous polymerization system involved ESR‐observable polymer radical, the concentration of which increased with time up to 3.4 × 10?5 mol/L. The polymer formed in the polymerization for 2 h consisted of 46 mol % of DVB unit and 54 mol % of the methoxycarbonylpropyl group as MAIB fragment, indicating that an initiator‐fragment incorporation radical polymerization proceeds in the present polymerization. The polymer was soluble in benzene, tetrahydrofuran, ethyl acetate, chloroform, acetone, and N,N‐dimethylformamide, while it was insoluble in n‐hexane, acetonitrile, dimethyl sulfoxide, methanol, and water. The results of the multiangle laser light scattering and viscometric measurements revealed that the individual polymer molecules were formed as hyperbranched polymer nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 664–670, 2006  相似文献   

13.
The synthesis and fundamental spectroscopic properties of eight hemicyanine (HC) dyes are presented. The dyes were prepared by the condensation of N‐methyl‐5,6,7,8‐tetrahydroisoquinolinium iodide with p‐(N,N‐dialkylamino)benzaldehydes. The compounds were characterised by nuclear magnetic resonance spectroscopy and their purity was checked with the use of thin‐layer chromatography. The spectroscopic properties of the dyes were determined in three organic solvents. The electronic absorption spectra of the dyes demonstrate moderate sensitivity to the nature of the substituent present in the aromatic ring and low solvent polarity dependence. In contrast to this, the positions of fluorescence bands are affected by the structure of an electron donor and solvent polarity. The 4‐[N‐(5,6,7,8‐tetrahydroisoquinolinium‐5‐ylidene)methyl]‐N,N‐dialkylaniline iodides were applied as fluorescent probes for the monitoring of the progress of free radical polymerisation. The study on the changes in the fluorescence intensity and spectroscopic shifts of the dyes was carried out during thermally initiated polymeriszation of methyl methacrylate. The purpose of these studies was to find a relationship between the changes in the shape and intensity of probe fluorescence and the degree of monomer conversion into polymer.  相似文献   

14.
The dynamic swelling behavior of chemically crosslinked poly(n‐butylacrylate/1,6‐hexanedioldiacrylate) [poly(Abu‐HDDA)] networks, immersed in an nematogenic and two isotropic solvents, was experimentally analyzed. These networks were elaborated by ultraviolet (UV)–visible light‐induced radical polymerization/crosslinking reactions of Abu/HDDA mixtures, to yield poly(Abu/0.5 wt % HDDA) and poly(Abu/5 wt % HDDA) networks corresponding to weakly and strongly crosslinked systems, respectively. The swelling behavior of these poly(Abu‐HDDA) networks was investigated by immersion in excess solvent, followed by subsequent measurements of the variation of the sample size by means of optical microscopy, depending on temperature and immersion time. Methanol and toluene were employed as isotropic solvents and the nematic liquid crystal molecule 4‐cyano‐4 ′ ‐n‐pentyl‐biphenyl, was considered as anisotropic medium. Swelling ratios were calculated by taking into account diameter sizes as function of immersion time compared to the dry state. Experimental data were analyzed using the Komori–Sakamoto approach and the results of this model were found to be in good agreement with the obtained data. The plateau values of the swelling curves at equilibrium were used to establish phase diagrams as function of temperature and solvent concentration. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45452.  相似文献   

15.
A new polymerizable 1,1′‐bi‐2‐naphthol derivative for polymer‐supported catalytic asymmetric synthesis is presented. The synthesis is conducted within a single reaction step, which is a major advantage over other approaches presented in the literature. The ligand‐bearing polymer is prepared through copolymerization with N‐isopropylacrylamide. Preliminary experiments on the utility in catalytic asymmetric alkylation reactions reveal the accessibility and activity of the polymer‐attached catalysts. The stereoselectivity of the reaction is found to be somewhat lower than for reactions performed in the presence of free 1,1′‐bi‐2‐naphthol, and thus requires further optimization. The enantiomeric excess of the reaction products was determined via 1H NMR spectroscopy after chiral derivatization with (R)‐α‐methylbenzyl isocyanate. © 2015 Society of Chemical Industry  相似文献   

16.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

17.
Highly crosslinked cauliflower‐like poly(N,N′‐methylenebisacrylamide) particles were prepared by distillation precipitation polymerization in neat acetonitrile with 2,2′‐azobisisobutyronitrile as initiator. Monodisperse hydrophilic polymer microspheres with various functional groups, such as amide, pyrrolidone and carboxylic acid, with a spherical shape and smooth surface in the size range 120–600 nm were prepared by distillation precipitation copolymerizations of functional comonomers including N‐isopropylacrylamide, N‐vinylpyrrolidone, methacrylic acid with N,N′‐methylenebisacrylamide as crosslinker. The polymer particles were formed and precipitated out from the reaction medium during the distillation of the solvent from the reaction system through an entropic precipitation manner. The effects of the solvent and the degree of crosslinking on the morphology and the loading capacity of the functional groups of the resultant polymer particles were investigated. The resulting polymer particles were characterized with scanning electron microscopy, transmission electron microscopy, dynamic light scattering and Fourier transform infrared spectroscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
A new ionic polyacetylene was prepared by the activation polymerization of 2‐ethynylpyridine with 2‐(bromomethyl)‐5‐nitrofuran in high yield without any additional initiator or catalyst. This polymerization proceeded well in a homogeneous manner to give a high yield of the polymer (92%). The activated acetylenic triple bond of N‐(5‐nitro‐2‐furanmethylene)‐2‐ethynylpyridinium bromide, formed in the first quaternerization process, was found to be susceptible to linear polymerization. This polymer was completely soluble in such polar organic solvents as dimethylformamide, dimethyl sulfoxide, and N,N‐dimethylacetamide. The inherent viscosities of the resulting polymers were in the range 0.12–0.19 dL/g, and X‐ray diffraction analysis data indicated that this polymer was mostly amorphous. The polymer structure was characterized by various instrumental methods to have a polyacetylene backbone structure with the designed substituent. The photoluminescence peak was observed at 593 nm; this corresponded to a photon energy of 2.09 eV. The polymer exhibited irreversible electrochemical behaviors between the doping and undoping peaks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
The synthesis and characterization of the vinyltriethoxysilane‐modified silica nanoparticles were investigated. It was shown that the vinyltriethoxysilane molecules had been successfully grafted onto the silica nanoparticles. The native and silane‐modified silica dispersions in N‐methyl‐2‐pyrrolidone with the total solids contents within the range 1–6 wt % exhibited dramatically different flow behaviors. The polymerization of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) initiated by barbituric acid in the presence of the native or vinyltriethoxysilane‐modified silica nanoparticles were then carried out in γ‐butyrolactone (total solids content = 20%). The higher the level of silica, the better the thermal stability of the BMI/silane/silica composite particles. The silane‐modified silica particles significantly improved their dispersion capability within the continuous BMI oligomer matrix. Furthermore, the degree of dispersion of the vinyltriethoxysilane‐modified silica particles in the BMI oligomer matrix decreased with the weight percentage of silica based on total solids increased from 20 to 40 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: Sci 103: 3600–3608, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号