首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer solar cells (PSCs) with poly(3‐hexylthiophene) (P3HT) as a donor, an indene‐C70 bisadduct (IC70BA) as an acceptor, a layer of indium tin oxide modified by MoO3 as a positive electrode, and Ca/Al as a negative electrode are presented. The photovoltaic performance of the PSCs was optimized by controlling spin‐coating time (solvent annealing time) and thermal annealing, and the effect of the spin‐coating times on absorption spectra, X‐ray diffraction patterns, and transmission electron microscopy images of P3HT/IC70BA blend films were systematically investigated. Optimized PSCs were obtained from P3HT/IC70BA (1:1, w/w), which exhibited a high power conversion efficiency of 6.68%. The excellent performance of the PSCs is attributed to the higher crystallinity of P3HT and better a donor–acceptor interpenetrating network of the active layer prepared under the optimized conditions. In addition, PSCs with a poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate) (PEDOT:PSS) buffer layer under the same optimized conditions showed a PCE of 6.20%. The results indicate that the MoO3 buffer layer in the PSCs based on P3HT/IC70BA is superior to that of the PEDOT:PSS buffer layer, not only showing a higher device stability but also resulting in a better photovoltaic performance of the PSCs.  相似文献   

2.
以聚3己基噻吩(P3HT)和[6,6]-phenyl-C61-butyric acid methyl ester(PCBM)为活性层材料制成聚合物太阳电池,通过控制活性层旋涂速率控制活性层厚度。从不同活性层厚度器件的吸收光谱、原子力及器件各项性能参数详细分析了不同活性层旋涂速率对太阳电池性能的影响。结果表明:旋涂速率为1 000 r/min时,电池具有最佳性能,光电转换效率最高为1.54%。  相似文献   

3.
[6,6]‐phenyl‐C‐61‐butyric acid methyl ester (PCBM) and poly(3‐hexylthiophene) (P3HT) are the most widely used acceptor and donor materials, respectively, in polymer solar cells (PSCs). However, the low LUMO (lowest unoccupied molecular orbital) energy level of PCBM limits the open circuit voltage (Voc) of the PSCs based on P3HT. Herein a simple, low‐cost and effective approach of modifying PCBM and improving its absorption is reported which can be extended to all fullerene derivatives with an ester structure. In particular, PCBM is hydrolyzed to carboxylic acid and then converted to the corresponding carbonyl chloride. The latter is condensed with 4‐nitro‐4’‐hydroxy‐α‐cyanostilbene to afford the modified fullerene F . It is more soluble than PCBM in common organic solvents due to the increase of the organic moiety. Both solutions and thin films of F show stronger absorption than PCBM in the range of 250–900 nm. The electrochemical properties and electronic energy levels of F and PCBM are measured by cyclic voltammetry. The LUMO energy level of F is 0.25 eV higher than that of PCBM. The PSCs based on P3HT with F as an acceptor shows a higher Voc of 0.86 V and a short circuit current (Jsc) of 8.5 mA cm?2, resulting in a power conversion efficiency (PCE) of 4.23%, while the PSC based on P3HT:PCBM shows a PCE of about 2.93% under the same conditions. The results indicate that the modified PCBM, i.e., F , is an excellent acceptor for PSC based on bulk heterojunction active layers. A maximum overall PCE of 5.25% is achieved with the PSC based on the P3HT: F blend deposited from a mixture of solvents (chloroform/acetone) and subsequent thermal annealing at 120 °C.  相似文献   

4.
Inverted-structure polymer solar cells (I-PSCs) containing sequentially sprayed electron-transporting layers (ETLs) and photoactive layers were fabricated. Low-temperature sol–gel-derived ZnO thin films were used as the ETLs and films of a poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend were used as the photoactive layers. Nanoripples-containing ZnO ETLs could be successfully fabricated by controlling the spraying rate of the ZnO precursor solution and the subsequent annealing conditions. The P3HT/PCBM active layers sprayed on the ZnO ETLs were optimized using a unique solvent-assisted post-deposition treatment, namely, the sprayed solvent overlayer (SSO) treatment. The power conversion efficiency (PCE) of the I-PSCs based on the optimized ETLs and active layers was as high as 3.55%, which is comparable to that reported for I-PSCs fabricated using the conventional spin-coating method. The sprayed I-PSCs also exhibited high environmental stability, maintaining ∼80% of their PCE even after 40 days of aging in air under ambient conditions without encapsulation. The I-PSCs based on the P3HT/PCBM photoactive layers optimized using the SSO treatment displayed much higher stability than those based on photoactive layers optimized using a conventional thermal annealing treatment. This result indicated that the SSO treatment is a suitable post-deposition treatment method for improving the morphological stability of P3HT/PCBM active layers. Further, the fabrication technique investigated in this study is a high-throughput low-temperature one and is suitable for fabricating high-stability PSCs.  相似文献   

5.
The self‐organization of the polymer in solar cells based on regioregular poly(3‐hexylthiophene) (RR‐P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied systematically as a function of the spin‐coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin‐coating process. These blend films are characterized by photoluminescence spectroscopy, UV‐vis absorption spectroscopy, atomic force microscopy, and grazing incidence X‐ray diffraction (GIXRD) measurements. The results indicate that the π‐conjugated structure of RR‐P3HT in the films is optimally developed when ta is greater than 1 min (ts ~ 50 s). For t s < 50 s, both the short‐circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π‐conjugated structure of RR‐P3HT to 1.2 % for a less‐ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon‐to‐electron conversion efficiency spectrum of the less‐ordered solar cell shows a clear loss in both the overall magnitude and the long‐wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open‐circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.  相似文献   

6.
Efficient inverted bulk-heterojunction (BHJ) poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) organic solar cells fabricated by rapid-drying blade-coated were demonstrated. Optimized self-organization interpenetration networks and donor/acceptor domain sizes were obtained while maintaining the smooth surface morphology. By integrating with low-temperature-processed sol-gel ZnO electron extraction layer, power conversion efficiency (PCE) up to 4.4% under AM1.5G 1 sun illumination is achieved, compared to fast drying but low efficiency (1.2%) and high efficiency but with long-time solvent annealing treatment (4.3%) control cells deposited by spin coating in chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) solution, respectively. The novel deposition technique reveals a promising process for highly efficient, high throughput, stable morphology organic solar cells fabrication.  相似文献   

7.
This study addresses two key issues, stability and efficiency, of polymer solar cells based on blended poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) by demonstrating a film‐forming process that involves low‐temperature drying (?5 °C) and subsequent annealing of the active layer. The low‐temperature process achieves 4.70% power conversion efficiency (PCE) and ~1250 h storage half‐life at 65 °C, which are significant improvements over the 3.39% PCE and ~143 h half‐life of the regular room‐temperature process. The improvements are attributed to the enhanced nucleation of P3HT crystallites as well as the minimized separation of the P3HT and PCBM phases at the low drying temperature, which upon post‐drying annealing results in a morphology consisting of small PCBM‐rich domains interspersed within a densely interconnected P3HT crystal network. This morphology provides ample bulk‐heterojunction area for charge generation while allowing for facile charge transport; moreover, the P3HT crystal network serves as an immobile frame at heating temperatures less than the melting point (Tm) of P3HT, thus preventing PCBM/P3HT phase separation and the corresponding device degradation.  相似文献   

8.
The performance of polymer solar cells (PSC) strongly depends on the 3D morphological organization of the donor and acceptor compounds within the bulk heterojunction active layer. The technique of electron tomography is a powerful tool for studying 3D morphology of the layers composed of poly(3‐hexylthiophene) (P3HT) and a fullerene derivative ([6,6]‐phenyl‐C61‐butyric acid methyl ester; PCBM), especially to quantify the amount and distribution of fibrillar P3HT nanocrystals throughout the volume of the active layer. In this study, electron tomography is used to characterize P3HT/PCBM layers with different blend compositions, both before and after thermal annealing. The power conversion efficiency of the corresponding PSCs is strongly dependent on the overall crystallinity of P3HT and the way P3HT crystals are distributed throughout the thickness of the active layer.  相似文献   

9.
A series of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐like fullerene derivatives with the butyl chain in PCBM changing from 3 to 7 carbon atoms, respectively (F1–F5), are designed and synthesized to investigate the relationship between photovoltaic properties and the molecular structure of fullerene derivative acceptors. F2 with a butyl chain is PCBM itself for comparison. Electrochemical, optical, electron mobility, morphology, and photovoltaic properties of the molecules are characterized, and the effect of the alkyl chain length on their properties is investigated. Although there is little difference in the absorption spectra and LUMO energy levels of F1–F5, an interesting effect of the alkyl chain length on the photovoltaic properties is observed. For the polymer solar cells (PSCs) based on P3HT as donor and F1–F5, respectively, as acceptors, the photovoltaic behavior of the P3HT/F1 and P3HT/F4 systems are similar to or a little better than that of the P3HT/PCBM device with power conversion efficiencies (PCEs) above 3.5%, while the performances of P3HT/F3 and P3HT/F5‐based solar cells are poorer, with PCE values below 3.0%. The phenomenon is explained by the effect of the alkyl chain length on the absorption spectra, fluorescence quenching degree, electron mobility, and morphology of the P3HT/F1–F5 (1:1, w/w) blend films.  相似文献   

10.
The in situ morphology change upon thermal annealing in bulk heterojunction blend films of regioregular poly(3‐hexylthiophene) (P3HT) and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C61 (PCBM) is measured by a grazing incidence X‐ray diffraction (GIXD) method using a synchrotron radiation source. The results show that the film morphology—including the size and population of P3HT crystallites—abruptly changes at 140 °C between 5 and 30 min and is then stable up to 120 min. This trend is almost in good agreement with the performance change of polymer solar cells fabricated under the same conditions. The certain morphology change after 5 min annealing at 140 °C is assigned to the on‐going thermal transition of P3HT molecules in the presence of PCBM transition. Field‐emission scanning electron microscopy measurements show that the crack‐like surface of blend films becomes smaller after a very short annealing time, but does not change further with increasing annealing time. These findings indicate that the stability of P3HT:PCBM solar cells cannot be secured by short‐time annealing owing to the unsettled morphology, even though the resulting efficiency is high.  相似文献   

11.
The efficiency of polymer solar cells (PSCs) can be essentially enhanced by improving the performance of electron‐acceptor materials, including by increasing the lowest unoccupied molecular orbital (LUMO) level, improving the optical absorption, and tuning the material solubility. Here, a new soluble C70 derivative, dihydronaphthyl‐based C70 bisadduct (NC70BA), is synthesized and explored as acceptor in PSCs. The NC70BA has high LUMO energy level that is 0.2 eV higher than [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), and displays broad light absorption in the visible region. Consequently, the PSC based on the blend of poly(3‐hexylthiophene) (P3HT) and NC70BA shows a high open‐circuit voltage (Voc = 0.83 V) and a high power conversion efficiency (PCE = 5.95%), which are much better than those of the P3HT:PCBM‐based device (Voc = 0.60 V; PCE = 3.74%). Moreover, the amorphous nature of NC70BA effectively suppresses the thermally driven crystallization, leading to high thermal stability of the P3HT:NC70BA‐based solar cell devices. It is observed that the P3HT:NC70BA‐based device retains 80% of its original PCE value against thermal heating at 150 °C over 20 h. The results unambiguously indicate that the NC70BA is a promising acceptor material for practical PSCs.  相似文献   

12.
Non‐destructive lateral mapping of the thickness of the photoactive layer in poly(3‐hexyl‐thiophene) : 1‐(3‐methoxy‐carbonyl)propyl‐1‐phenyl‐(6,6)C61 (P3HT : PCBM) solar cells is demonstrated. The method employs a spatially resolved (XY) recording of ultraviolet‐visible spectra in reflection geometry at normal incidence, using a dense raster defined by a circular probe spot of 800‐µm diameter. The evaluation of the thickness of the photoactive layer at each raster point employs an algorithm‐driven comparison of the measured absorption spectrum with spectral features, as compiled from the corresponding simulated spectrum. For the robustness of the applied algorithm toward noise in the recorded absorption data to be increased, a new minimum finder algorithm is described and implemented. The thickness evaluation relies on the correct assignment of extrema in the experimental absorption spectra to the corresponding extrema in the simulated absorption spectra, and a new algorithm for this is also implemented and described. For a level of confidence for the method to be established, first thickness mapping is performed for a set of reference samples consisting of P3HT : PCBM spin‐coated on indium tin oxide‐coated float glass substrates. After this, two application examples for solar cells processed either by spin coating or slot die coating of the P3HT : PCBM layer follow. The spin‐coated solar cells have glass as the substrate with the P3HT : PCBM spun at different spinning speeds. The slot die‐coated solar cells were processed on polyethylene terephthalate foil in a roll‐to‐roll experiment involving a continuously changing P3HT : PCBM concentration along the printing direction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The 3D nanomorphology of blends of two different (organic and inorganic) solid phases as used in bulk heterojunction solar cells is described by a spatial stochastic model. The model is fitted to 3D image data describing the photoactive layer of poly(3‐hexylthiophene)‐ZnO (P3HT‐ZnO) solar cells fabricated with varying spin‐coating velocities. A scenario analysis is performed where 3D morphologies are simulated for different spin‐coating velocities to elucidate the correlation between processing conditions, morphology, and efficiency of hybrid P3HT‐ZnO solar cells. The simulated morphologies are analyzed quantitatively in terms of structural and physical characteristics. It is found that there is a tendency for the morphology to coarsen with increasing spin‐coating velocity, creating larger domains of P3HT and ZnO. The impact of the spin‐coating velocity on the connectivity of the morphology and the existence of percolation pathways for charge carriers in the resulting films appears insignificant, but the quality of percolation pathways, considering the charge carrier mobility, strongly varies with the spin‐coating velocity, especially in the ZnO phase. Also, the exciton quenching efficiency decreases significantly for films deposited at large spin‐coating velocities. The stochastic simulation model investigated is compared to a simulated annealing model and is found to provide a better fit to the experimental data.  相似文献   

14.
Studies on the influence of four different solvents on the morphology and photovoltaic performance of bulk‐heterojunction films made of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) via spin‐coating for photovoltaic applications are reported. Solvent‐dependent PCBM cluster formation and P3HT crystallization during thermal annealing are investigated with optical microscopy and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and are found to be insufficient to explain the differences in device performance. A combination of atomic force microscopy (AFM), X‐ray reflectivity (XRR), and grazing‐incidence small‐angle X‐ray scattering (GISAXS) investigations results in detailed knowledge of the inner film morphology of P3HT:PCBM films. Vertical and lateral phase separation occurs during spin‐coating and annealing, depending on the solvent used. The findings are summarized in schematics and compared with the IV characteristics. The main influence on the photovoltaic performance arises from the vertical material composition and the existence of lateral phase separation fitting to the exciton diffusion length. Absorption and photoluminescence measurements complement the structural analysis.  相似文献   

15.
A novel P3HT:PCBM inverted polymer solar cell (IPSC) was fabricated and investigated. An extra PCBM and an extra P3HT interfacial layers were inserted into the bottom side and the top side of the P3HT:PCBM absorption layer of the IPSCs to respectively enhance electron transport and hole transport to the corresponding electrodes. According to the surface energy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) measurement results, the extra PCBM interfacial layer could let more P3HT to form on the top side of the P3HT:PCBM blends. It revealed that the non-continuous pathways of P3HT in the P3HT:PCBM absorption layer could be reduced. Consequently, the carrier recombination centers were reduced in the absorption layer of IPSCs. The power conversion efficiency (PCE) of the P3HT:PCBM IPSCs with an extra PCBM interfacial layer greatly increased from 3.39% to 4.50% in comparison to the P3HT:PCBM IPSCs without an extra PCBM interfacial layer. Moreover, the performance of the P3HT:PCBM IPSCs with an extra PCBM interfacial layer could be improved by inserting an extra P3HT interfacial layer between the absorption layer and the MoO3 layer. The PCE of the resulting IPSCs increased from 4.50% to 4.97%.  相似文献   

16.
Polymer bulk hetero-junction solar cells of poly(3-hexylthiophene) (P3HT) donor and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) acceptor are fabricated by blade coating in toluene solution. Desired donor–acceptor self-organization is achieved without the slow drying process and high boiling point solvent. Power conversion efficiency is 3.8%, much higher than the 2.6% obtained by spin coating in toluene solution. The blade coating method has nearly 100% material usage and can be integrated in the roll-to-roll process with high throughput production.  相似文献   

17.
Changes in the nanoscale morphologies of the blend films of poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), for high‐performance bulk‐heterojunction (BHJ) solar cells, are compared and investigated for two annealing treatments with different morphology evolution time scales, having special consideration for the diffusion and aggregation of PCBM molecules. An annealing condition with relatively fast diffusion and aggregation of the PCBM molecules during P3HT crystallization results in poor BHJ morphology because of prevention of the formation of the more elongated P3HT crystals. However, an annealing condition, accelerating PCBM diffusion after the formation of a well‐ordered morphology, results in a relatively stable morphology with less destruction of crystalline P3HT. Based on these results, an effective strategy for determining an optimized annealing treatment is suggested that considers the effect of relative kinetics on the crystallization of the components for a blend film with a new BHJ materials pair, upon which BHJ solar cells are based.  相似文献   

18.
《Organic Electronics》2014,15(9):2059-2067
Polymer solar cells (PSCs) are of great interest in the past decade owing to their potentially low-cost in the manufacturing by the solution-based roll to roll method. In this paper, a novel inverted device structure was introduced by inserting a high conductive PEDOT:PSS (hcPEDOT:PSS) layer between the Au nanoparticles (NPs)-embedded hole transport layer (PEDOT:PSS) and the top electrode layer. Power conversion efficiency (PCE) initially reached up to 4.51%, illustrating ∼10% higher compared with the device similarly enhanced by Au NPs plasmonics where only one PEDOT:PSS layer with the embedded Au NPs was used in single bulk heterojunction inverted PSCs based on the poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM). The PCE was further improved from 4.51% to 5.01% by adding the high-boiling point solvent of 1,8-diiodooctane (DD) into the active layer, presenting ∼20% enhancement in PCE through dual effects of introducing the high boiling point solvent and the high conductive PEDOT:PSS layer. Morphologies of the active layers were characterised by SEM and AFM separately in the paper.  相似文献   

19.
We use spectroscopic ellipsometry to study the evolution of structure and optoelectronic properties of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) photovoltaic thin film blends upon thermal annealing. Four distinct processes are identified: the evaporation of residual solvent above the glass transition temperature of the blend, the relaxation of non‐equilibrium molecular conformation formed through spin‐casting, the crystallization of both P3HT and PCBM components, and the phase separation of the P3HT and PCBM domains. Devices annealed at 150 °C for between 10 and 60 min exhibit an average power conversion efficiency of around 4.0%. We find that the rate at which the P3HT/PCBM is returned to room temperature is more important in determining device efficiency than the duration of the isothermal annealing process. We conclude that the rapid quenching of a film from the annealing temperature to room temperature hampers the crystallization of the P3HT and can trap non‐equilibrium morphological states. Such states apparently impact on device short circuit current, fill factor and, thus, operational efficiency.  相似文献   

20.
Perovskite solar cells (PSCs) are one of the most promising solar energy conversion technologies owing to their rapidly developing power conversion efficiency (PCE). Low‐temperature solution processing of the perovskite layer enables the fabrication of flexible devices. However, their application has been greatly hindered due to the lack of strategies to fabricate high‐quality electron transport layers (ETLs) at the low temperatures (≈100 °C) that most flexible plastic substrates can withstand, leading to poor performances for flexible PSCs. In this work, through combining the spin‐coating process with a hydrothermal treatment method, ligand‐free and highly crystalline SnO2 ETLs are successfully fabricated at low temperature. The flexible PSCs based on this SnO2 ETL exhibit an excellent PCE of 18.1% (certified 17.3%). The flexible PSCs maintained 85% of the initial PCE after 1000 bending cycles and over 90% of the initial PCE after being stored in ambient air for 30 days without encapsulation. The investigation reveals that hydrothermal treatment not only promotes the complete removal of organic surfactants coated onto the surface of the SnO2 nanoparticles by hot water vapor but also enhances crystallization through the high vapor pressure of water, leading to the formation of high‐quality SnO2 ETLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号